Math. Nachr. 213 (2000), 155-175

Resolvent Matrices in Degenerated Inner Product Spaces

By HARALD WORACEK of Vienna

(Received March 16, 1998)

1. Introduction

Let $\langle \mathfrak{P}, [\cdot, \cdot] \rangle$ be a Pontryagin space, S be a densely defined closed symmetric operator in \mathfrak{P} with defect index (1,1) and let u be an element of \mathfrak{P} . It has been proved in [KL] that there exists a 2×2 -matrix valued function $W(z) = (w_{ij}(z))_{i,j=1}^2$ which is analytic in a certain open set, such that the formula

(1.1)
$$r_u(z) = \frac{w_{11}(z)\tau(z) + w_{12}(z)}{w_{21}(z)\tau(z) + w_{22}(z)}$$

establishes a bijective correspondence between the set of so-called u-resolvents of S

 $r_u(z) := [(A-z)^{-1}u, u],$

where A runs through the selfadjoint extensions of S acting in some Pontryagin spaces $\widetilde{\mathfrak{P}} \supseteq \mathfrak{P}$, and the set $\bigcup_{\nu=0}^{\infty} \mathcal{N}_{\nu}$ of parameters $\tau(z)$. Here \mathcal{N}_{ν} denotes the set of all functions τ meromorphic in $\mathbb{C} \setminus \mathbb{R}$, $\tau(\overline{z}) = \overline{\tau(z)}$, such that the Nevanlinna kernel

$$N_{\tau}(z,w) := \frac{\tau(z) - \overline{\tau(w)}}{z - \overline{w}}$$

has ν negative squares. For notational convenience we assume that the function $\tau(z) \equiv \infty$ belongs to \mathcal{N}_0 . A matrix W(z) with the above property is called a *u*-resolvent matrix of *S*. The existence of a *u*-resolvent matrix is a consequence of Krein's formula on the description of generalized resolvents.

In [KW3] the element u was allowed to be a so-called generalized element, which leads to a natural characterization of those matrix functions W(z) which appear as

¹⁹⁹¹ Mathematics Subject Classification. 47B50, 47B25, 47A10.

Keywords and phrases. Resolvent matrix, inner product space, symmetric relation.

resolvent matrices. For a particular subclass of the set of all resolvent matrices, namely for those W where $u \in \mathfrak{P}$, a related characterization can be found in [KL].

Assume now that \mathfrak{P} is an inner product space which satisfies the following two axioms:

(D1) The isotropic part \mathfrak{P}° of \mathfrak{P} is finite dimensional.

(D2) The space $\mathfrak{P}/\mathfrak{P}^\circ$ is a Pontryagin space.

Then an analogue of Krein's formula has been proved in [KW2]. The first aim of this note is to introduce an appropriate notion of generalized elements for a space \mathfrak{P} satisfying **(D1)** and **(D2)** and a closed symmetric relation $S \subseteq \mathfrak{P}^2$ with defect index (1, 1), and to derive a formula of the type (1.1) for a generalized element u. Secondly, a characterization of those matrices W(z) shall be given which can be represented as u-resolvent matrices in this setting, i.e. with a relation S in a space \mathfrak{P} which is degenerated (dim $\mathfrak{P}^\circ > 0$). Finally, we consider inner product spaces of entire functions which satisfy certain additional axioms (compare [dB], [KW4]) and show that for such spaces the set of generalized elements can be identified with a set of entire functions known as the set of associated functions. This supplements the results of [KW4], Section 10.

In Section 2 we provide the theory of generalized elements and triplet spaces for a closed symmetric relation with defect index $(n, n), n \in \mathbb{N}$, in a Pontryagin space, which is similar to the considerations of [KW3] in the case of defect (1, 1). This notion is used to define triplet spaces for a degenerated inner product space \mathfrak{P} . Section 3 is concerned with the study of regularized resolvents of $S \subseteq \mathfrak{P}^2$. In particular an appropriate version of Krein's formula is proved (Proposition 3.7). The characterization of resolvent matrices of symmetric relations in degenerated spaces is given in Section 4 (Proposition 4.3). This result is not constructive in the sense that it uses an abstract model for a certain selfadjoint relation (compare [KW3]). However, if the symmetric relation S is minimal, the conditions can be reformulated in terms of the asymptotic behaviour of the entries of W for $z \to i\infty$ (Proposition 4.5). In Section 5 we consider spaces of entire functions and investigate the mentioned interpretation of generalized elements (Proposition 5.1).

Our notation is similar to that of [KW2] and [KW3]. For some elementary facts concerning Pontryagin spaces and linear relations therein we refer to [IKL] and [DS]. In the case that \mathfrak{P} is a Hilbert space different related constructions of spaces of generalized elements can be found e.g. in [B], [GG] or [LT].

2. Triplet spaces

Let $\langle \mathfrak{P}, [\cdot, \cdot] \rangle$ be a Pontryagin space and let $S \subseteq \mathfrak{P}^2$ be a symmetric relation with equal and finite defect numbers. Choose a fundamental symmetry \mathcal{J} on \mathfrak{P} and define $(\cdot, \cdot) := [\mathcal{J} \cdot, \cdot]$. We use the following notation (compare [KW3]):

$$\left(\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}, \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \right)_+ := (a_1, a_2) + (b_1, b_2), \quad a_i, b_i \in \mathfrak{P}, \quad \mathfrak{P}_+ := \langle S^*, (\cdot, \cdot)_+ \rangle,$$

$$\pi : \begin{cases} S^* \longrightarrow \mathfrak{P} \\ \begin{pmatrix} a \\ b \end{pmatrix} \longmapsto a \\ \end{pmatrix}, \quad \iota : \begin{cases} \mathfrak{P} \longrightarrow \mathfrak{P}/\ker \pi^* \\ a \longmapsto \hat{a} \\ \end{pmatrix}, \\ (\hat{a}, \hat{b})_{-} := (\pi^* a, \pi^* b)_{+}, \quad \hat{a}, \quad \hat{b}, \in \mathfrak{P}/\ker \pi^*, \quad \mathfrak{P}_{-} := \overline{\langle \mathfrak{P}/\ker \pi^*, (\cdot, \cdot)_{-} \rangle} \oplus \langle S^*(0), (\cdot, \cdot) \rangle, \\ \\ V : \begin{cases} (\mathfrak{P}/\ker \pi^*) \oplus S^*(0) \longrightarrow \mathfrak{P}_{+} \\ \hat{a} \oplus b \longmapsto \pi^* a + \begin{pmatrix} 0 \\ b \end{pmatrix} \end{cases}. \end{cases}$$

The inner product of the space \mathfrak{P}_{-} will again be denoted by $(\cdot, \cdot)_{-}$. If $\widetilde{\mathfrak{P}} \supseteq \mathfrak{P}$ is another Pontryagin space, denote

$$\widetilde{\mathfrak{P}}_{+} := \mathfrak{P}_{+} \oplus \left(\widetilde{\mathfrak{P}}[-]\mathfrak{P}\right)^{2}, \quad \widetilde{\mathfrak{P}}_{-} := \mathfrak{P}_{-} \oplus \left(\widetilde{\mathfrak{P}}[-]\mathfrak{P}\right)^{2}$$
$$\widetilde{V} := V \oplus \operatorname{id}_{\widetilde{\mathfrak{P}}[-]\mathfrak{P}}.$$

Moreover, we define a duality

$$\left[\begin{pmatrix} a \\ b \end{pmatrix}, u \right]_{\pm} := \left(\begin{pmatrix} a \\ b \end{pmatrix}, \widetilde{V}u \right)_{+}, \quad \begin{pmatrix} a \\ b \end{pmatrix} \in \widetilde{\mathfrak{P}}_{+}, \quad u \in \left(\mathfrak{P}/\ker \pi^* \dot{+} S^*(0) \right) \oplus \left(\widetilde{\mathfrak{P}}[-] \mathfrak{P} \right).$$

Lemma 2.1. With the above notation we have:

$$\ker \pi = S_{\infty}^{*}, \quad \operatorname{ran} \pi = \operatorname{dom} S^{*}, \quad \ker \pi^{*} = S(0), \quad \overline{\operatorname{ran} \pi^{*}} = S_{\infty}^{*} {}^{(\perp)_{+}}$$

The mappings $V\left(\widetilde{V}\right)$ are isometric, hence extend by continuity to $\mathfrak{P}_{-}\left(\widetilde{\mathfrak{P}}_{-}\right)$. These extensions will again be denoted by $V\left(\widetilde{V}\right)$. Also the duality $[\cdot, \cdot]_{\pm}$ extends to $\mathfrak{P}_{+} \times \mathfrak{P}_{-}$. We have $V\iota = \pi^{*}$, hence

$$\left[\begin{pmatrix} a \\ b \end{pmatrix}, \iota f \right]_{\pm} = \left[\pi \begin{pmatrix} a \\ b \end{pmatrix}, f \right], \quad \begin{pmatrix} a \\ b \end{pmatrix} \in \mathfrak{P}_{+}, \quad f \in \mathfrak{P}.$$

If $f \in \mathfrak{P}$, then $\pi^* f$ is the $(\cdot, \cdot)_+$ -orthogonal projection of $\begin{pmatrix} \mathcal{I}f\\ 0 \end{pmatrix}$ onto S^* .

Proof. With exception of the last statement all assertions are proved similar as the corresponding results in [KW3]. To prove the last assertion note that for any $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathfrak{P}_+$

$$\left(\pi^*f, \begin{pmatrix} a \\ b \end{pmatrix}\right)_+ = [f, a] = (\mathcal{J}f, a) = \left(\begin{pmatrix} \mathcal{J}f \\ 0 \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix}\right)_+.$$

For notational convenience we put

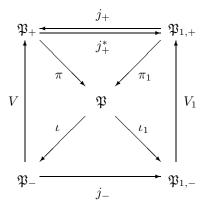
$$\left[u, \begin{pmatrix} a \\ b \end{pmatrix}\right]_{\pm} := \overline{\left[\begin{pmatrix} a \\ b \end{pmatrix}, u\right]_{\pm}}.$$

,

Let $S, S_1 \subseteq \mathfrak{P}^2$ be symmetric relations and assume that $S \subseteq S_1$. Then clearly $S_1^* \subseteq S^*$, hence if \mathfrak{P}_+ and $\mathfrak{P}_{1,+}$ denote the spaces constructed with S and S_1 , respectively, we have $\mathfrak{P}_{1,+} \subseteq \mathfrak{P}_+$. In the following we investigate how the corresponding spaces $\mathfrak{P}_$ and $\mathfrak{P}_{1,-}$ are connected. Let π, ι, V (π_1, ι_1, V_1) be constructed as above starting from S (S_1), denote by j_+ the embedding of $\mathfrak{P}_{1,+}$ into \mathfrak{P}_+ and let j_+^* be its adjoint with respect to the inner products $(\cdot, \cdot)_+$ and $(\cdot, \cdot)_{1,+}$. Note that these inner products are in fact the same and that j_+^* is the $(\cdot, \cdot)_+$ -orthogonal projection of S^* onto S_1^* . Moreover, define a mapping $j_-: \mathfrak{P}_- \to \mathfrak{P}_{1,-}$ by

(2.1)
$$j_{-} := V_{1}^{-1} j_{+}^{*} V.$$

Then we are in the following situation:



Note the formal similarity with the situation considered in [KW3], Section 7. However, there it is assumed that the relation S has defect (1, 1) in a smaller space $\mathfrak{P}' \subseteq \mathfrak{P}$ which need not be the case in the present situation.

Lemma 2.2. With the above introduced notation the following relations hold:

$$\pi j_+ = \pi_1, \quad j_- \iota = \iota_1.$$

The mapping j_{-} is the adjoint of j_{+} with respect to the dualities $[\cdot, \cdot]_{1,\pm}$ and $[\cdot, \cdot]_{\pm}$.

Proof. The first relation is obvious since j_+ is the embedding of $\mathfrak{P}_{1,+}$ into \mathfrak{P}_+ . To prove the second relation we compute

$$j_{-}\iota = V_1^{-1}j_+^*V\iota = V_1^{-1}j_+^*\pi^* = V_1^{-1}\pi_1^* = \iota_1.$$

It follows from the definition (2.1) of j_{-} that for $u \in \mathfrak{P}_{-}$ and $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathfrak{P}_{1,+}$ the relation

$$\left[j_{-}u, \begin{pmatrix} a \\ b \end{pmatrix}\right]_{1,\pm} = \left[u, j_{+} \begin{pmatrix} a \\ b \end{pmatrix}\right]_{\pm}$$

holds.

159

The just introduced general notion of triplet spaces will be used to define spaces \mathfrak{P}_+ and \mathfrak{P}_- also if \mathfrak{P} is degenerated. In the remainder of this paper \mathfrak{P} will always be assumed to be an inner product space satisfying the axioms (D1) and (D2) and which is actually degenerated, i.e. $\Delta := \dim \mathfrak{P}^\circ > 0$. If \mathfrak{P}_n is a nondegerated subspace of \mathfrak{P} with $\mathfrak{P}_n \dotplus \mathfrak{P}^\circ = \mathfrak{P}$, we define a Pontryagin space

(2.2)
$$\mathfrak{P}_c := \mathfrak{P}_n[\dot{+}](\mathfrak{P}^\circ \dot{+} \mathfrak{P}'),$$

where \mathfrak{P}' is an isomorphic copy of \mathfrak{P}° which is skewly linked to \mathfrak{P}° (compare [IKL]).

Let S be a closed symmetric relation in \mathfrak{P} with defect index (1, 1); for the notion of defect indices in degenerated spaces compare [KW2]. Then S can be considered as a relation in \mathfrak{P}_c with defect index ($\Delta + 1, \Delta + 1$).

If $\{h_1, \ldots, h_{\Delta}\}$ and $\{h'_1, \ldots, h'_{\Delta}\}$ are skewly linked bases of \mathfrak{P}° and \mathfrak{P}' , i.e. if

span
$$\{h_1, \ldots, h_\Delta\} = \mathfrak{P}^\circ$$
, span $\{h'_1, \ldots, h'_\Delta\} = \mathfrak{P}'$, $[h_i, h'_j] = \delta_{ij}$,

and if \mathcal{J}_n is a fundamental symmetry of \mathfrak{P}_n , then the mapping $\mathcal{J}:\mathfrak{P}\to\mathfrak{P}$ defined by

 $\mathcal{J}\big|_{\mathfrak{P}_n} = \mathcal{J}_n, \quad \mathcal{J}(h_i) = h'_i, \quad \mathcal{J}\big(h'_i\big) = h_i,$

is a fundamental symmetry of \mathfrak{P}_c . Using this fundamental symmetry and the symmetric relation $S \subseteq \mathfrak{P}_c^2$, we construct spaces $\mathfrak{P}_{c,+}$ and $\mathfrak{P}_{c,-}$. Note that $\mathfrak{P}^\circ \times \mathfrak{P}^\circ \subseteq S^* \subseteq \mathfrak{P}_c^2$.

Definition 2.3. Denote in the following

$$\mathfrak{P}_+ := \mathfrak{P}_{c,+} \cap (\mathfrak{P}_n + \mathfrak{P}')^2 = \mathfrak{P}_{c,+}(-)_+ (\mathfrak{P}^\circ)^2, \quad \mathfrak{P}_- := \overline{\iota \mathfrak{P}} \oplus (S^*(0)(-)_- \mathfrak{P}^\circ),$$

where the closure of $\iota \mathfrak{P}$ has to be understood in the space $\mathfrak{P}_{c,-}$.

Lemma 2.4. With the above definition we have

$$(2.3) V\mathfrak{P}_{-} = \mathfrak{P}_{+}$$

Moreover, $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathfrak{P}_+$ if and only if $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathfrak{P}_{c,+}$ and both, $\mathcal{J}a$ and $\mathcal{J}b$, are contained in \mathfrak{P} .

Proof. Since $\mathfrak{P}^{\circ} \times \{0\} \subseteq S^*$ and $\mathcal{J}\mathfrak{P}' = \mathfrak{P}^{\circ}$, we conclude from Lemma 2.1 that $\pi^*\mathfrak{P}' = \mathfrak{P}^{\circ} \times \{0\}$. Since \mathfrak{P}' is finite dimensional, $\iota\mathfrak{P}'$ is closed. Hence it follows that $(\iota\mathfrak{P}' \oplus \mathfrak{P}^{\circ})^{(\perp)_{-}} = \mathfrak{P}_{-}$. Since V is an isometry of $\mathfrak{P}_{c,-}$ onto $\mathfrak{P}_{c,+}$ and maps $\iota\mathfrak{P}' \oplus \mathfrak{P}^{\circ}$ onto $(\mathfrak{P}^{\circ})^2$, we obtain (2.3).

3. Regularized resolvents

As in the second part of the previous section let \mathfrak{P} be a fixed inner product space which satisfies the axioms **(D1)** and **(D2)** and assume that $\Delta = \dim \mathfrak{P}^{\circ} > 0$. Moreover, let $S \subseteq \mathfrak{P}^2$ be a closed symmetric relation with defect index (1, 1). Let $\tilde{\mathfrak{P}}$ be a Pontryagin space which extends \mathfrak{P} and let $\tilde{A} \subseteq \tilde{\mathfrak{P}}^2$ be a selfadjoint relation with nonempty resolvent set which extends S. A straightforward argument yields:

Lemma 3.1. The space $\widehat{\mathfrak{P}}$ can be considered as an extension of \mathfrak{P}_c .

Denote by \widetilde{P} the orthogonal projection of $\widetilde{\mathfrak{P}}$ onto \mathfrak{P}_c and by \widetilde{P}^+ the orthogonal projection of $\widetilde{\mathfrak{P}}_+$ onto \mathfrak{P}_+ . As in [KW3] we may define operators $R_z^+: \widetilde{\mathfrak{P}} \to \widetilde{\mathfrak{P}}_+$ and $R_z^-: \widetilde{\mathfrak{P}}_- \to \widetilde{\mathfrak{P}}$ by

$$R_{z}^{+}f := \begin{pmatrix} (A-z)^{-1}f \\ (I+z(A-z)^{-1})f \end{pmatrix}, \quad f \in \widetilde{\mathfrak{P}}, \quad R_{z}^{-} := (R_{\overline{z}}^{+})^{*}\widetilde{V},$$

and $\widetilde{R}_z^+:\mathfrak{P}_c\to\mathfrak{P}_{c,+}$ and $\widetilde{R}_z^-:\mathfrak{P}_{c,-}\to\mathfrak{P}_c$ by

$$\widetilde{R}_z^+ := \widetilde{P}^+ R_z^+ \big|_{\mathfrak{P}_c}, \quad \widetilde{R}_z^- := \widetilde{P} R_z^- \big|_{\mathfrak{P}_{c,-}}.$$

With similar arguments as in [KW3] we prove that $(z, w \in \rho(A))$

$$R_{z}^{+} - R_{w}^{+} = (z - w)R_{z}^{+}(A - w)^{-1},$$

$$R_{z}^{-} - R_{w}^{-} = (z - w)(A - z)^{-1}R_{w}^{-},$$

$$\left[R_{z}^{+}f, u\right]_{\pm} = \left[f, R_{\overline{z}}^{-}u\right], \quad f \in \mathfrak{P}_{c}, \quad u \in \mathfrak{P}_{c,-},$$

$$\ker R_{z}^{+} = \{0\}, \quad \operatorname{ran} R_{z}^{+} = A,$$

(3.1) $\ker R_z^- = V^{-1}(\mathfrak{P}_{c,+}(\bot)_+A), \quad \operatorname{ran} R_z^- = \mathfrak{P}_c.$

Lemma 3.2. Let $A \subseteq \mathfrak{P}^2_c$, $\rho(A) \neq \emptyset$, be such that $(A-z)^{-1}\mathfrak{P} \subseteq \mathfrak{P}$ for $z \in \rho(A)$. Then

(3.2)
$$\dim \left(\ker R_w^- \cap \mathfrak{P}_- \right) = 1, \quad R_w^- \mathfrak{P}_- = \mathfrak{P}.$$

Proof. First note that the condition $(A - z)^{-1}\mathfrak{P} \subseteq \mathfrak{P}$ implies $R_w^+\mathfrak{P}^\circ \subseteq \mathfrak{P}^\circ \times \mathfrak{P}^\circ$, hence for $u \in \mathfrak{P}_-$ we have

(3.3)
$$\left[R_w^- u, \mathfrak{P}^\circ\right] = \left[u, R_w^+ \mathfrak{P}^\circ\right]_{\pm} = 0,$$

i.e. $R_w^- u \in \mathfrak{P}$. We also conclude that dim $(A \cap (\mathfrak{P}^{\circ} \times \mathfrak{P}^{\circ})) \geq \Delta$. The reverse inequality holds anyway as $\rho(A) \neq \emptyset$, since otherwise $A \cap \ker ((x; y) \mapsto y - zx) \neq \{0\}$ and we obtain a contradiction if z is chosen in $\rho(A)$. Since $\operatorname{codim}_{\mathfrak{P}_{c,+}} A = \Delta + 1$, this yields the first relation in (3.2).

Denote by P the $(\cdot, \cdot)_+$ -orthogonal projection of $\mathfrak{P}_{c,+}$ onto $\mathfrak{P}_{c,+}(-)_+A$, then the above consideration shows that dim $P(\mathfrak{P}^\circ \times \mathfrak{P}^\circ) = \Delta$. Let $u \in \mathfrak{P}_{c,-}$ be given such that $R_w^- u \in \mathfrak{P}$. By (3.3) we have $u(\bot)_{\pm}(A \cap (\mathfrak{P}^\circ \times \mathfrak{P}^\circ))$, and by the above proved we can choose $u_1 \in V^{-1}(\mathfrak{P}_{c,+}(-)_+A)$, such that $u + u_1(\bot)_{\pm}\mathfrak{P}^\circ \times \mathfrak{P}^\circ$, i. e. $u + u_1 \in \mathfrak{P}_-$. The second relation in (3.2) now follows from (3.1).

Note that, if $S \subseteq S_1 \subseteq \mathfrak{P}^2_c$, if spaces $\mathfrak{P}_{c,-}$ and $\mathfrak{P}_{c1,-}$ are constructed starting from S and S_1 , respectively, and if A is a selfadjoint extension of S_1 and hence also of S, then

$$(3.4) j_+ R_z^{1,+} = R_z^+$$

Along the lines of [KW3] we may define a so-called regularized resolvent $\hat{R}_z : \mathfrak{P}_{c,-} \to \mathfrak{P}_{c,+}$ by $(z_0 \in \rho(\tilde{A}))$

(3.5)

$$\hat{R}_{z} := \begin{pmatrix} \tilde{R}_{z}^{-} - \frac{1}{2} \left(\tilde{R}_{z_{0}}^{-} + \tilde{R}_{\overline{z_{0}}}^{-} \right) \\ z \tilde{R}_{z}^{-} - \frac{1}{2} \left(z_{0} \tilde{R}_{z_{0}}^{-} + \overline{z_{0}} \tilde{R}_{\overline{z_{0}}}^{-} \right) \end{pmatrix} \\
= (z - \operatorname{Re} z_{0}) \tilde{P}^{+} R_{\overline{z_{0}}}^{+} R_{z_{0}}^{-} |_{\mathfrak{P}_{c,-}} \\ + (z - z_{0}) (z - \overline{z_{0}}) \tilde{P}^{+} R_{\overline{z_{0}}}^{+} (\tilde{A} - z)^{-1} R_{z_{0}}^{-} |_{\mathfrak{P}_{c,-}}$$

The function $(u, v \in \mathfrak{P}_{-}, \alpha \in \mathbb{R})$

$$r_{u,v}(z) := \alpha + [\hat{R}_z u, v]_{\pm}, \quad z \in \rho(A),$$

is called a regularized resolvent of $S \subseteq \mathfrak{P}^2$. We shall give a parametrization of the set of all regularized resolvents of $S \subseteq \mathfrak{P}^2$. Note that the relation (3.5) implies

(3.6)
$$\begin{bmatrix} \hat{R}_{z}u, v \end{bmatrix}_{\pm} = (z - \operatorname{Re} z_{0}) \begin{bmatrix} R_{z_{0}}^{-}u, R_{z_{0}}^{-}v \end{bmatrix} \\ + (z - z_{0})(z - \overline{z_{0}}) \begin{bmatrix} (\tilde{A} - z)^{-1}R_{z_{0}}^{-}u, R_{z_{0}}^{-}v \end{bmatrix} .$$

If we choose another point $z_0 \in \rho(\tilde{A})$ for the definition (3.5) of a regularization, the function $r_{u,v}(z)$ changes only by a real additive constant.

In order to make the results of [KW2] applicable we assume in the following that S satisfies the regularity conditions

- (R1) For each $h \in \mathfrak{P}^{\circ}$ we have $S \cap \operatorname{span} \{h\}^2 = \{0\}$.
- (R2) There exist numbers $z_+ \in \mathbb{C}^+$ and $z_- \in \mathbb{C}^-$ such that

$$\operatorname{ran}\left(S-z_{\pm}\right)+\mathfrak{P}^{\circ} = \mathfrak{P}.$$

First we investigate the condition **(R1)** and show that, when studying the set of regularized resolvents, it does not represent an essential restriction. Let us recall from [HSW]:

Lemma 3.3. Let $A \subseteq \widetilde{\mathfrak{P}}^2$ be a selfadjoint relation in the Pontryagin space $\widetilde{\mathfrak{P}}$, $\rho(A) \neq \emptyset$, and let \mathfrak{M} be a subspace of $\widetilde{\mathfrak{P}}$ which is invariant under each resolvent $(A-z)^{-1}, z \in \rho(A)$. Then the relation $A_{\mathfrak{M}} := (A \cap \mathfrak{M}^2)/\mathfrak{M}^\circ \subseteq (\mathfrak{M}/\mathfrak{M}^\circ)^2$ is selfadjoint and $\rho(A_{\mathfrak{M}}) \supseteq \rho(A)$.

By a straightforward argument using Lemma 4.3 of [KW3] we obtain

Lemma 3.4. Let $A \subseteq \widetilde{\mathfrak{P}}^2$, $\rho(A) \neq \emptyset$, be a selfadjoint extension of $S \subseteq \mathfrak{P}^2$. Let $\mathcal{L} \subseteq \mathfrak{P}^\circ$ be contained in ran (S-z) for all $z \in \rho(A)$ and assume that $(S-z)^{-1}\mathcal{L} \subseteq \mathcal{L}$ for such z. Put $\mathfrak{M} = \mathcal{L}^{\perp}$, then $S_1 := S/\mathfrak{L}$ has defect index (1, 1) in the space $\mathfrak{P}_1 :=$

 $\mathfrak{P}/\mathfrak{L} \subseteq \mathfrak{P}_{\mathfrak{M}} := \mathfrak{M}/\mathfrak{M}^{\circ}$. For any element $u_1 \in \mathfrak{P}_{1,-}$ there exists an element $u \in \mathfrak{P}_$ with $R_z^- u \in \mathfrak{M}$ for one and hence for all $z \in \rho(A)$, such that

$$(R_z^- u)/\mathfrak{M}^\circ = R_{\mathfrak{M},z}^- u_1, \quad z \in \rho(A),$$

and conversely.

Denote by M_{μ} the spaces

$$M_{\mu}(S) := \{h \in \mathfrak{P}^{\circ} \mid (h; \mu h) \in S\}, \quad \mu \in \mathbb{C},$$

$$M_{\infty}(S) := \mathfrak{P}^{\circ} \cap S(0),$$

and let

$$\mathfrak{L}(S) := \operatorname{span} \left\{ M_{\mu}(S) \mid \mu \in \mathbb{C} \cup \{\infty\} \right\}.$$

If S is an operator the spaces M_{μ} are clearly linearly independent. If S is a proper relation this is not true in general. However, we have the following result:

Lemma 3.5. Assume that S has an extension $A_0 \subseteq \widehat{\mathfrak{P}}_0^2$ with nonempty resolvent set in some Pontryagin space $\widetilde{\mathfrak{P}}_0 \supseteq \mathfrak{P}$. Then there exist linearly independent elements $f_1, \ldots, f_m \in \mathfrak{P}^\circ$, $(\lambda_i f_i; \mu_i f_i) \in S$, $i = 1, \ldots m$, such that

$$M_{\mu}(S) = \operatorname{span}\left\{f_i \mid \mu = \frac{\mu_i}{\lambda_i}\right\}.$$

Proof. It suffices to show that there exists no nontrivial linear combination

(3.7)
$$\sum_{i=1}^{n} \gamma_i h_i \in M_{\infty}(S),$$

 $\gamma_i \in \mathbb{C} \setminus \{0\}, h_i \in M_{\mu_i}(S) \setminus \{0\}, \mu_i \in \mathbb{C}$ pairwise different for $i = 1, \ldots, n$. Assume the contrary, and let n(S) be the minimal lenght of a linear combination satisfying (3.7). Since S admits an extension with nonempty resolvent set, we have

(3.8)
$$\operatorname{span}\{h\}^2 \not\subseteq S, \quad h \in \mathfrak{P},$$

hence n(S) > 1. Clearly

$$\left(\sum_{i=1}^n \gamma_i h_i; \sum_{i=1}^{n-1} \gamma_i (\mu_i - \mu_n) h_i\right) \in S - \mu_n \,,$$

hence

$$\sum_{i=1}^{n-1} \gamma_i (\mu_i - \mu_n) h_i \in M_\infty(S/M_\infty(S))$$

Lemma 3.3 applied with $\mathfrak{M} := \widetilde{\mathfrak{P}}_0[-]M_{\infty}(S)$ shows that the relation $S/M_{\infty}(S) \subseteq (\mathfrak{P}/M_{\infty}(S))^2$ admits an extension with nonempty resolvent set. The element h_i is contained in $M_{\mu_i}(S/M_{\infty}(S))$ and is by (3.8) not zero in the space $\mathfrak{P}/M_{\infty}(S)$. We

conclude that $n(S/M_{\infty}(S)) < n(S)$. Proceeding inductively we obtain a contradiction.

Proposition 3.6. Let $S \subseteq \mathfrak{P}^2$ be a closed symmetric relation and assume that S admits an extension $A_0 \subseteq \widetilde{\mathfrak{P}}_0^2$ with nonempty resolvent set in some Pontryagin space $\widetilde{\mathfrak{P}}_0 \supseteq \mathfrak{P}$. Then the relation $S/\mathfrak{L}(S) \subseteq (\mathfrak{P}/\mathfrak{L}(S))^2$ is a closed symmetric relation with the same defect index as S and satisfies

$$(S/\mathfrak{L}(S)) \cap \operatorname{span} \{h\}^2 = \{0\}, \quad h \in (\mathfrak{P}/\mathfrak{L}(S))^\circ$$

The relations S and $S/\mathfrak{L}(S)$ have the same family of regularized resolvents.

Proof. First let an extension $A \subseteq \widetilde{\mathfrak{P}}^2$, $\rho(A) \neq \emptyset$, of S be given. If we put $\mathfrak{M} := \mathfrak{L}(S)^{\perp}$, we clearly have $\mathfrak{M}^\circ = \mathfrak{L}(S)$ and $\mathfrak{P} \subseteq \mathfrak{M}$. Hence the relation $A_{\mathfrak{M}}$ extends $S/\mathfrak{L}(S)$. It follows from $\mathfrak{L}(S) \subseteq \mathfrak{P}^\circ$ that

$$\left[(A-z)^{-1}u, v \right] = \left[(A/\mathfrak{M}^{\circ}-z)^{-1}(u/\mathfrak{M}^{\circ}), (v/\mathfrak{M}^{\circ}) \right], \quad u, v \in \mathfrak{P},$$

and (3.6) implies that $A_{\mathfrak{M}}$ induces the same regularized resolvent as A.

Now let an extension $A' \subseteq \left(\widetilde{\mathfrak{P}}'\right)^2$ of $S' := S/\mathfrak{L}(S)$ be given. We may consider $\mathfrak{P}/\mathfrak{L}(S)$ as a subspace of \mathfrak{P} , e.g. by

$$\mathfrak{P}/\mathfrak{L}(S) \cong \mathfrak{P}' := \mathfrak{P}_n[\dot{+}]\mathfrak{P}'^{\circ},$$

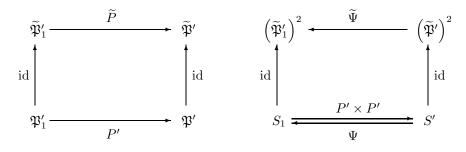
where $\mathfrak{P}^{\prime\circ}$ is any complement of $\mathfrak{L}(S)$ in \mathfrak{P}° and where \mathfrak{P}_n is as in (2.2). Choose $h \in \mathfrak{L}(S)$, $(\lambda h; \mu h) \in S$, and define a Pontryagin space

$$\widetilde{\mathfrak{P}}_{1}' := \widetilde{\mathfrak{P}}' \left[\dot{+} \right] \operatorname{span} \left\{ h, h' \right\},$$

where h and h' are skewly linked, and $\mathfrak{P}'_1 := \mathfrak{P}' \dotplus \operatorname{span} \{h\} \subseteq \widetilde{\mathfrak{P}}'_1$. Note that $(\mathfrak{P}'_1)^2$ contains the relation $S'_1 := S/(\mathfrak{L}(S) \ominus \operatorname{span} \{h\})$. Denote by P' the projection of \mathfrak{P} onto \mathfrak{P}' with kernel $\mathfrak{L}(S)$, and by P'_1 the projection of \mathfrak{P} onto \mathfrak{P}'_1 with kernel $\mathfrak{L}(S) \ominus$ span $\{h\}$. Then $S' \cong P' \times P'S$ and $S'_1 \cong P'_1 \times P'_1S$. Write $S'_1 = S_1 \dotplus \operatorname{span} \{(\lambda h; \mu h)\}$, with a closed subspace S_1 of $(\mathfrak{P}'_1)^2$. Then $P' \times P'$ maps S_1 bijectively onto S', hence there exists an inverse mapping Ψ . If T is any closed complement of S' in $(\widetilde{\mathfrak{P}'})^2$, $S' \dotplus T = (\widetilde{\mathfrak{P}'})^2$, we may extend Ψ to

$$\widetilde{\Psi} := \Psi \oplus \operatorname{id}_T : \left(\widetilde{\mathfrak{P}}'\right)^2 \longrightarrow \left(\widetilde{\mathfrak{P}}_1'\right)^2.$$

We are in the following situation:



Note that $\operatorname{ran} \widetilde{\Psi} \subseteq \operatorname{span} \left\{ \widetilde{\mathfrak{P}}', h \right\}^2$, in fact $\operatorname{ran} \left(\widetilde{\Psi} - \operatorname{id}_{\left(\widetilde{\mathfrak{P}}' \right)^2} \right) \subseteq \operatorname{span} \left\{ (\lambda h; \mu h) \right\}$. It follows that the relation

$$A := \operatorname{span}\left\{\widetilde{\Psi}A', (\lambda h; \mu h)\right\} \subseteq \left(\widetilde{\mathfrak{P}}_{1}'\right)^{2}$$

is closed, symmetric, extends S and has defect index (1, 1).

We show that $\sigma_p(A) \subseteq \sigma_p(A') \cup \{\frac{\mu}{\lambda}\}$. Assume that $z \in \sigma_p(A) \setminus \sigma_p(A')$, and let $(x; zx) \in A, x \neq 0$. By the definition of A we can write for some $(a; b) \in A'$

(3.9)
$$(x;zx) = \widetilde{\Psi}(a;b) + \sigma(\lambda h;\mu h) = (a;b) + \sigma'(\lambda h;\mu h).$$

Hence $b - za = -\sigma'(\mu - z\lambda)h$, which implies b - za = 0 and $-\sigma'(\mu - z\lambda) = 0$. Since $z \notin \sigma_p(A')$ we conclude that a = b = 0, and since $x \neq 0$ the relation (3.9) implies that $\sigma' \neq 0$, hence $\mu - z\lambda = 0$.

It follows that there exists a selfadjoint extension $\tilde{A} \subseteq \left(\tilde{\mathfrak{P}}_{1}'\right)^{2}$ of A with nonempty resolvent set. By our construction the relation $\tilde{A}_{\mathfrak{M}}$ as defined in the first part of this proof coincides with A', thus \tilde{A} induces the same regularized resolvent as A'. Proceeding inductively, which is possible by Lemma 3.5, the assertion follows. \Box

Note that, if S satisfies **(R1)** and **(R2)**, which will be assumed throughout the following, the relation $S/\mathfrak{P}^{\circ} \subseteq (\mathfrak{P}/\mathfrak{P}^{\circ})^2$ is selfadjoint, has nonempty resolvent set and $z \in \mathbb{C} \setminus \mathbb{R}$ is an eigenvalue of S/\mathfrak{P}° if and only if ran $(S-z) + \mathfrak{P}^{\circ} \neq \mathfrak{P}$.

We recall some notations and results. Let z_0 be such that $\operatorname{ran}(S - z_0) + \mathfrak{P}^\circ = \mathfrak{P}$. By [KW2] there exists a basis $\{h_1, \ldots, h_\Delta\}$ of \mathfrak{P}° such that

$$S \cap (\mathfrak{P}^{\circ})^2 = \operatorname{span} \{ (h_i; h_{i+1}) \mid i = 1, \dots, \Delta - 1 \}$$

and we can write $S = S_1 + S \cap (\mathfrak{P}^\circ)^2$ where $\operatorname{ran}(S_1 - z_0)$ is nondegenerated and $\operatorname{ran}(S_1 - z_0) + \mathfrak{P}^\circ = \mathfrak{P}$. In the definition (2.2) of \mathfrak{P}_c we choose $\mathfrak{P}_n := \operatorname{ran}(S_1 - z_0)$. Again by [KW2] there exists a selfadjoint extension $\mathring{A} \subseteq \mathfrak{P}_c^2$, $\rho(\mathring{A}) \neq \emptyset$, of S with

Note that $\overset{\circ}{A}$ satisfies $(\overset{\circ}{A} - z)^{-1} \mathfrak{P} \subseteq \mathfrak{P}$. If $\{h'_1, \ldots, h'_{\Delta}\}$ is a basis of \mathfrak{P}' in (2.2) which is skewly linked to $\{h_1, \ldots, h_{\Delta}\}$ and

$$\chi(z_0) := h'_1 + z_0 h'_2 + \dots + z_0^{\Delta - 1} h'_{\Delta},$$

then $\chi(z) := \left(I + (z - z_0) \left(\mathring{A} - z\right)^{-1}\right) \chi(z_0)$ defines defect elements of S, i.e. elements satisfying $\chi(z) \perp \operatorname{ran}(S - \overline{z})$, for which additionally

$$[\chi(z), h_i] = z^{i-1}, \quad i = 1, \dots, \Delta.$$

Denote by q the (up to additive real constants) unique function with

$$\frac{q(z) - \overline{q(w)}}{z - \overline{w}} = [\chi(z), \chi(w)].$$

It is shown in [KW2] that the formula

(3.11)
$$[(A-z)^{-1}u,v] = [(\mathring{A}-z)^{-1}u,v] - [u,\chi(\overline{z})] \frac{1}{q(z)+\tau(z)} [\chi(z),v], u,v \in \mathfrak{P},$$

establishes a correspondence of the set of generalized resolvents of $S \subseteq \mathfrak{P}^2$ and parameters $\tau \in \bigcup_{\nu=0}^{\infty} \mathcal{K}_{\nu}^{\Delta} \setminus \{-q\}$. There the set $\mathcal{K}_{\nu}^{\Delta}$ is defined as the set of all functions τ meromorphic in $\mathbb{C} \setminus \mathbb{R}$, $\tau(\overline{z}) = \overline{\tau(z)}$, which are such that the maximal number of negative squares of a quadratic form

$$Q(\xi_1, \dots, \xi_m; \eta_1, \dots, \eta_\Delta) = \sum_{i,j=1}^m \frac{\tau(z) - \overline{\tau(w)}}{z - \overline{w}} \xi_i \overline{\xi_j} + \sum_{k=1}^\Delta \sum_{i=1}^m \operatorname{Re}\left(z_i^{k-1} \xi_i \overline{\eta_k}\right)$$

is ν . For an alternative approach to the classes $\mathfrak{K}^{\Delta}_{\nu}$ compare [KW1]. These facts imply the following result:

Proposition 3.7. Let $u, v \in \mathfrak{P}_{-}$ be given. The formula

$$\left[\hat{R}_{z}u,v\right]_{\pm} = \left[\hat{R}_{z}u,v\right]_{\pm} - \left[u,\left(\frac{\chi(\overline{z})}{\overline{z}\chi(\overline{z})}\right)\right]_{\pm}\frac{1}{q(z)+\tau(z)}\left[\left(\frac{\chi(z)}{z\chi(z)}\right),v\right]_{\pm} + \beta(u,v),$$

parametrizes the regularized resolvents of $S \subseteq \mathfrak{P}^2$. Here $\beta(u, v)$ is a constant which depends besides u and v on the choice of z_0 in the definition (3.5). The meaning of χ , q and τ is as in (3.11).

Proof. Using (3.11) and the definition of \widetilde{R}_z^+ we compute for $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathfrak{P}_+$ and $x \in \mathfrak{P}$:

$$\begin{pmatrix} \widetilde{R}_z^+ x, \begin{pmatrix} a \\ b \end{pmatrix} \end{pmatrix}_+ = \left[(A-z)^{-1} x, \mathcal{J}a \right] + \left[\left(I + z(A-z)^{-1} \right) x, \mathcal{J}b \right]$$
$$= \left(\overset{\circ}{R}_z^+ x, \begin{pmatrix} a \\ b \end{pmatrix} \right)_+ - \left[x, \chi(\overline{z}) \right] \frac{1}{q(z) + \tau(z)} \left(\begin{pmatrix} \chi(z) \\ z\chi(z) \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix} \right)_+ ,$$

hence it follows that for $u \in \mathfrak{P}_{-}$ and $x \in \mathfrak{P}$

$$\left[\tilde{R}_{z}^{-}u,x\right] = \left(Vu,\tilde{R}_{\overline{z}}^{+}x\right)_{+} = \left[\tilde{R}_{z}^{\circ-}u,x\right] - \left[u,\left(\frac{\chi(\overline{z})}{\overline{z}\chi(\overline{z})}\right)\right]_{\pm} \frac{1}{q(z)+\tau(z)}\left[\chi(z),x\right].$$

From this formula and the definition of \hat{R}_z we find for $u, v \in \mathfrak{P}_-$

$$\begin{split} \left[\hat{R}_{z}u, v \right]_{\pm} &= \left[\hat{R}_{z}u, v \right]_{\pm} - \left[u, \left(\frac{\chi(\overline{z})}{\overline{z}\chi(\overline{z})} \right) \right]_{\pm} \frac{1}{q(z) + \tau(z)} \left[\left(\chi(z) \atop z\chi(z) \right), v \right]_{\pm} \\ &+ \frac{\left[u, \left(\frac{\chi(\overline{z_{0}})}{\overline{z_{0}\chi(\overline{z_{0}})}} \right) \right]_{\pm} \left[\left(\chi(z_{0}) \atop z_{0}\chi(z_{0}) \right), v \right]_{\pm} }{2(q(z_{0}) + \tau(z_{0}))} \\ &+ \frac{\left[u, \left(\frac{\chi(z_{0})}{z_{0}\chi(z_{0})} \right) \right]_{\pm} \left[\left(\frac{\chi(\overline{z_{0}})}{\overline{z_{0}\chi(\overline{z_{0}})}} \right), v \right]_{\pm} }{2(q(\overline{z_{0}}) + \tau(\overline{z_{0}}))} . \end{split}$$

4. Resolvent matrices

Let an element $u \in \mathfrak{P}_{-}$ be given. The function

$$r(z) := \alpha + \left[\hat{R}_z u, u \right]_+,$$

where \hat{R}_z is the regularized resolvent of some selfadjoint extension of S and $\alpha \in \mathbb{R}$, is called a regularized *u*-resolvent of S. Note that if $\left[u, \begin{pmatrix}\chi(z)\\z\chi(z)\end{pmatrix}\right]_{\pm} = 0$ for all $z \in \mathbb{C}^+$ or all $z \in \mathbb{C}^-$, there exists (up to real additive constants) exactly one regularized *u*-resolvent. Hence, when investigating the regularized *u*-resolvents, we may assume that for some $z_+ \in \mathbb{C}^+$ and $z_- \in \mathbb{C}^-$

$$\left[u, \begin{pmatrix} \chi(z_+) \\ z_+\chi(z_+) \end{pmatrix}\right]_{\pm} \neq 0, \quad \left[u, \begin{pmatrix} \chi(z_-) \\ z_-\chi(z_-) \end{pmatrix}\right]_{\pm} \neq 0.$$

Proposition 3.7 has the following corollary:

Corollary 4.1. Let $u \in \mathfrak{P}_{-}$ be given. There exists a 2×2 -matrix valued function

$$W(z) = \begin{pmatrix} w_{11}(z) & w_{12}(z) \\ w_{21}(z) & w_{22}(z) \end{pmatrix},$$

which is analytic in an open set containing $\mathbb{C} \setminus \mathbb{R}$ with possible exception of a set which has no accumulation point in $\mathbb{C} \setminus \mathbb{R}$, such that for any $\tau \in \bigcup_{\nu=0}^{\infty} \mathcal{K}_{\nu}^{\Delta} \setminus \{-q\}$ the function

$$(W \circ \tau)(z) := \frac{w_{11}(z)\tau(z) + w_{12}(z)}{w_{21}(z)\tau(z) + w_{22}(z)}$$

is a regularized u -resolvent of S and, conversely, any regularized u -resolvent r(z) can be written as

$$r(z) = \alpha + (W \circ \tau)(z)$$

for some choice of $\tau \in \bigcup_{\nu=0}^{\infty} \mathcal{K}_{\nu}^{\Delta} \setminus \{-q\}$ and a certain real constant α .

Proof. By (3.11) a matrix W(z) which has the asserted properties is given by

$$w_{11}(z) = \frac{\mathring{r}(z)}{\left[u, \begin{pmatrix}\chi(\tilde{z})\\ \bar{z}\chi(\tilde{z})\end{pmatrix}\right]_{\pm}},$$

$$w_{21}(z) = \frac{1}{\left[u, \begin{pmatrix}\chi(\tilde{z})\\ \bar{z}\chi(\tilde{z})\end{pmatrix}\right]_{\pm}},$$

$$(4.1)$$

$$w_{12}(z) = \frac{\mathring{r}(z)q(z) - \left[u, \begin{pmatrix}\chi(\tilde{z})\\ \bar{z}\chi(\tilde{z})\end{pmatrix}\right]_{\pm} \left[\begin{pmatrix}\chi(z)\\ z\chi(z)\end{pmatrix}, u\right]_{\pm}}{\left[u, \begin{pmatrix}\chi(\tilde{z})\\ \bar{z}\chi(\tilde{z})\end{pmatrix}\right]_{\pm}},$$

$$w_{22}(z) = \frac{q(z)}{\left[u, \begin{pmatrix}\chi(\tilde{z})\\ \bar{z}\chi(\tilde{z})\end{pmatrix}\right]_{\pm}},$$
where $\mathring{r}(z) = \left[\hat{R}, u, u\right]$

where $\overset{\circ}{r}(z) = \left[\hat{R}_z u, u \right]_{\pm}$.

The matrix W depends in an obvious way on the choice of $\chi(z)$ and q(z). Note that W depends in general also on the choice of \mathring{A} subject to the condition (3.10).

We will call a 2×2 – matrix valued function W(z) a generalized resolvent matrix in a degenerated space, if it equals the matrix

$$\begin{pmatrix} w_{11}(z) & w_{12}(z) \\ w_{21}(z) & w_{22}(z) \end{pmatrix},$$

where w_{ij} are given by (4.1) for some choice of \mathfrak{P} , dim $\mathfrak{P}^{\circ} > 0$, $u \in \mathfrak{P}_{-}$, $S \subseteq \mathfrak{P}^{2}$ and $\overset{\circ}{A} \supseteq S$, $h_{1} \in \overset{\circ}{A}(0)$, such that

$$\operatorname{cls}\left\{\chi(z), R_z^- u \mid z \in \rho\left(\overset{\circ}{A}\right)\right\} \;=\; \mathfrak{P}_c \,.$$

Consider the relation $S_1 \subseteq \mathfrak{P}^2_c$ defined by

(4.2)
$$S_1 := \left\{ (f;g) \in \overset{\circ}{A} \mid g - zf \perp \chi(\overline{z}), z \in \rho(\overset{\circ}{A}) \right\}.$$

Clearly $S_1 \subseteq \mathfrak{P}_c^2$ is a symmetric relation with defect index (1,1) and $S \subseteq S_1 \subseteq \mathfrak{P}_c^2$. Let $\mathfrak{P}_{c1,-}(\mathfrak{P}_{c,-})$ be constructed starting with $S_1(S)$ and let $j_-:\mathfrak{P}_{c,-}\to\mathfrak{P}_{c1,-}$ be as introduced in Section 2. Then \mathfrak{P}_- can be identified with the subspace $j_-\mathfrak{P}_-$ of $\mathfrak{P}_{c1,-}$. Now we have from the definition of S_1 , Lemma 2.4 and (3.4):

Lemma 4.2. The matrix W defined by (4.1) is a generalized $j_{-}u$ – resolvent matrix (in the sense of [KW3]) of the symmetric relation $S_1 \subseteq \mathfrak{P}^2_c$.

In particular, if $u_1, u_2 \in \mathfrak{P}_-$ are such that $j_-u_1 = j_-u_2$, then the generalized u_i -resolvent matrices (i = 1, 2) are equal.

Denote by \mathcal{M}_{ν} the set of all 2×2 -matrix functions, meromorphic in $\mathbb{C} \setminus \mathbb{R}$ which satisfy $W(z)JW(\overline{z}) = J$ and for which the kernel

$$\frac{W(z)JW(w)^* - J}{z - \overline{w}}$$

has ν negative squares. Here J denotes the matrix

$$J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Note that Lemma 4.2 and the results of [KW3] imply in particular that a generalized resolvent matrix W of $S \subseteq \mathfrak{P}^2$ is contained in $\mathcal{M}_{\kappa+\Delta}$. In the sequel we investigate the question which matrices $W \in \mathcal{M}_{\nu}$ can be realized as a generalized resolvent matrix of a symmetric relation in some degenerated space.

Recall from [KW3] that for any matrix $W \in \mathcal{M}_{\nu}$ there exist (iJ)-unitary matrices Uand V such that VW(z)U is a generalized u'-resolvent matrix of a certain symmetric relation S' with defect index (1,1) in a Pontryagin space $\mathfrak{P}', u' \in \mathfrak{P}'_{-}$. We can assume that (\mathfrak{P}', S', u') is minimal in the sense that $(\phi(z) \perp \operatorname{ran}(S' - \overline{z}), A' \subseteq \mathfrak{P}'^2, A' \supseteq S')$

$$\operatorname{cls}\left\{\phi(z), {R'_z}^- u' \mid z \in \rho(A')\right\} = \mathfrak{P}'.$$

If w_{21} does not vanish identically and at least one of w_{21} , w_{22} , det W is not constant, we may choose U = V = I, in which case \mathfrak{P}' , S' and u' are uniquely determined up to unitary equivalence and W(z) is given by the relations (4.1) for some extension A'of S'.

Proposition 4.3. Let $W \in \mathcal{M}_{\nu}$ be given and assume that w_{21} does not vanish identically and that at least one of w_{21} , w_{22} and det W is not constant. Let (\mathfrak{P}', S', u') be the unique minimal triple such that W(z) is a generalized u' – resolvent matrix of S' and let \mathring{A} be the canonical selfadjoint extension which is used to write W via the formulas (4.1). Denote by $\phi(z)$ defect elements of S' connected with \mathring{A} . Then W(z)is a generalized resolvent matrix in a degenerated space if and only if $\mathring{A}(0)$ contains a neutral element h_0 which has the properties

- (i) $[h_0, \phi(z)] \neq 0$ for one and hence for all $z \in \rho(\check{A})$,
- (ii) $V'u'(\perp)_+ \begin{pmatrix} 0\\h_0 \end{pmatrix}$.

Proof. First assume that the triple (\mathfrak{P}', S', u') has the stated properties. Then define

$$\mathfrak{P} := \operatorname{span} \{h_0\}^{\perp}, \quad S := \left\{ (f;g) \in \overset{\circ}{A} \mid g - zf \perp \phi(\overline{z}), h_0 \right\}$$

Clearly $\mathfrak{P}^{\circ} = \operatorname{span} \{h_0\}$ and $S \subseteq \mathfrak{P}^2$, $S \subseteq S'$. The condition (i) shows that for $z \in \rho(\mathring{A})$ the relation $h_0 \notin \operatorname{ran}(S-z)$ holds. Since $\rho(\mathring{A}) \neq \emptyset$, we conclude that S satisfies **(R1)**. Moreover, the relation S has defect index (2, 2) in the space \mathfrak{P}' , hence

the condition (**R2**) follows from the fact that $\phi(z) \notin \mathfrak{P}$ and we conclude that S has defect index (1,1) in the space \mathfrak{P} . Clearly $\mathfrak{P}_c \cong \mathfrak{P}'$ and $\overset{\circ}{A}$ satisfies (3.10).

Let $\mathfrak{P}'_{+} = S_1^* \subseteq \mathfrak{P}'^2$, $\mathfrak{P}_{c,+} = S^* \subseteq \mathfrak{P}_c^2 \cong \mathfrak{P}'^2$, and let j_+, j_- be as in Section 2, then $\mathfrak{P}_+ \subseteq \mathfrak{P}_{c,+}$. We shall construct an element $u \in \mathfrak{P}_-$, such that $j_-u = u'$. Then by Lemma 4.2 the matrix W will be the generalized u-resolvent matrix of $S \subseteq \mathfrak{P}^2$.

First note that since $h_0 \in \mathring{A}(0)$, clearly $\begin{pmatrix} 0\\h_0 \end{pmatrix} \in S_1^*$. We claim that $\begin{pmatrix} \overline{h_0}\\0 \end{pmatrix} \notin S_1^*$. Assume the contrary, then span $\{h_0\}^2 \subseteq S_1^*$, hence $h_0 \in \ker(S_1^* - z)$ for all z. It follows that $\left(\text{for } z \in \rho(\mathring{A})\right) \phi(z) = \lambda_z h_0$, hence we obtain

$$[\phi(z), h_0] = \lambda_z[h_0, h_0] = 0,$$

a contradiction to the condition (i).

Let ker $j_+^* =: \text{span}\left\{ \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} \right\}$, and define $u \in \mathfrak{P}_{c,-}$ by

$$Vu := j_{+}V'u' - \frac{\left(j_{+}V'u', \begin{pmatrix}h_{0}\\0\end{pmatrix}\right)_{+}}{\left(\begin{pmatrix}a_{0}\\b_{0}\end{pmatrix}, \begin{pmatrix}h_{0}\\0\end{pmatrix}\right)_{+}} \begin{pmatrix}a_{0}\\b_{0}\end{pmatrix}.$$

This definition makes sense, since by the above consideration we have

$$\left(\begin{pmatrix} a_0 \\ b_0 \end{pmatrix}, \begin{pmatrix} h_0 \\ 0 \end{pmatrix} \right)_+ \neq 0.$$

It follows that in fact $u \in \mathfrak{P}_-$. Clearly $j_-u = u'$.

Now assume that W is the generalized u-resolvent matrix of $S \subseteq \mathfrak{P}^2$. Consider the realization of W as a generalized resolvent matrix given in Lemma 4.2. By the construction of \mathring{A} and the definition of \mathfrak{P}_- the properties (i) and (ii) are satisfied for (\mathfrak{P}_c, S_1, u) .

Corollary 4.4. Let W be as in Proposition 4.3 and assume that W is a generalized resolvent matrix in a degenerated space \mathfrak{P} . Then W can also be represented in a space \mathfrak{P}_1 with dim $\mathfrak{P}_1^\circ = 1$.

In the case that the relation S' in the representing triple is minimal, i.e. that

$$\mathfrak{P}' = \operatorname{cls}\left\{\phi(z) \mid z \in \rho\left(\overset{\circ}{A}\right)\right\},$$

the conditions given in Proposition 4.3 can be easily read off from the entries of W.

Proposition 4.5. Let W be as in Proposition 4.3 and assume that S' is minimal. Then W is a generalized resolvent matrix in a degenerated space if and only if

(4.3)
$$\lim_{y \to +\infty} y \, \frac{w_{21}(iy)}{w_{22}(iy)} = 0 \,,$$

Math. Nachr. 213 (2000)

(4.4)
$$\lim_{y \to +\infty} \frac{\det W(iy)}{w_{22}(iy)} = 0$$

Proof. Since S' is minimal, we have $S'(0) = \{0\}$ and $\operatorname{codim} \overline{\operatorname{dom} S'} \leq 1$, which means $\dim S'^*(0) \leq 1$.

First we prove that, if $S'^*(0) = \operatorname{span} \{h_0\}$ and $\mathfrak{P} = \operatorname{span} \{h_0\}^{\perp}$ for some element $h_0 \neq 0$, then the condition $V'u'(\perp)_+ \begin{pmatrix} 0\\h_0 \end{pmatrix}$ is equivalent to $u' \in \overline{\iota \mathfrak{P}'}$ which is again equivalent to $\overset{\frown}{R_z} u' \in \mathfrak{P}$ for one and hence for all $z \in \rho(\overset{\circ}{A})$, where $\overset{\circ}{A}$ is the extension of S' with $\overset{\circ}{A}(0) = \operatorname{span} \{h_0\}$. The first equivalence follows since V' is an isometry of \mathfrak{P}'_- onto \mathfrak{P}'_+ and $S'^*(0) = \operatorname{span} \{h_0\}$, as by the definition of V'

span
$$\left\{ V'^{-1} \begin{pmatrix} 0 \\ h_0 \end{pmatrix} \right\}^{(\perp)_{-}} = \overline{\iota \mathfrak{P}'}$$

The second equivalence follows from the fact that \mathring{R}_z^- is a bounded operator, that $\mathring{R}_z^- \iota = (\mathring{A} - z)^{-1}$ maps \mathfrak{P}_c into \mathfrak{P} and that ran $\mathring{R}_z^- = \mathfrak{P}_c$.

If $\overline{\operatorname{dom} S'} = \mathfrak{P}'$, then all canonical selfadjoint extensions of S' are operators. Otherwise, if $\operatorname{codim} \operatorname{dom} S' = 1$, there exists exactly one proper relational extension of S'. Which of these cases occurs can be seen from the family of Q-functions of S': The first case occurs if and only if every Q-function q_A of S' and a (canonical) extension A satisfies

$$\lim_{y \to +\infty} \frac{q_A(iy)}{y} = 0$$

The second case occurs if and only if for some Q-function $q_{\dot{A}}$

$$\liminf_{y \to +\infty} \left| \frac{q_{\mathring{A}}(iy)}{y} \right| \neq 0.$$

Then for all other Q-functions q_A , $A \neq A$, the limit

(4.5)
$$i \lim_{y \to +\infty} y(q_A(iy) - \alpha_A) \in \mathbb{R}$$

exists for some $\alpha_A \in \mathbb{R}$. The, in this sense exceptional, extension A is the proper relational extension of S'. This has been proved in [HLS] in the positive definite case, in the Pontryagin space situation a similar argument applies.

Assume now that the conditions (4.3) and (4.4) are satisfied. By the relations (4.1) we have

~ (in)

(4.6)
$$q_{A}^{\circ}(z) = \frac{w_{22}(z)}{w_{21}(z)}$$

hence by (4.3)

(4.7)
$$\lim_{y \to +\infty} \frac{q_{A}^{*}(iy)}{y} = \infty,$$

and we conclude that A is a proper relation. Let $A(0) = \text{span}\{h_0\}$. If A is any (canonical) operator extension of S', defect elements $\phi(z)$ of S' connected to A are given by

(4.8)
$$\phi(z) = (A-z)^{-1}h_0.$$

Hence $q_A(z)$ is, up to a real additive constant α_A , equal to $[(A-z)^{-1}h_0, h_0]$ and we find

$$-i\lim_{y\to+\infty}y(q_A(iy)-\alpha_A) = [h_0,h_0],$$

in particular h_0 is neutral if and only if the limit (4.5) is zero.

The function q_A is expressed in terms of $q_{\hat{A}}$ by

(4.9)
$$q_A(z) = \frac{\left(t + 2\operatorname{Re} q_{\hat{A}}(z_0)\right)q_{\hat{A}}(z) - \left|q_{\hat{A}}(z_0)\right|^2}{q_{\hat{A}}(z) + t}$$

when $t \in \mathbb{R}$ is the parameter corresponding to A in Krein's formula. Hence, by (4.7), the limit (4.5) is zero with the choice $\alpha_A = t + 2 \operatorname{Re} q_{\hat{\lambda}}(z_0)$.

The defect elements $\phi(z)$ defined by (4.8) satisfy $\phi(z) = (I + (z - z_0)(A - z)^{-1})\phi(z_0)$, hence for a certain nonzero constant K

$$K\phi(z) = \left(I + (z - z_0)(A - z)^{-1}\right)\chi(z_0) = \frac{q_{\hat{A}}(z_0) + t}{q_{\hat{A}}(z) + t}\chi(z).$$

We obtain

$$h_0 = -i \lim_{y \to +\infty} y(A - iy)^{-1} h_0$$

= $-i \lim_{y \to +\infty} y\phi(iy)$
= $-K(t + q_A^{\circ}(z_0)) i \lim_{y \to +\infty} \frac{y}{q_A^{\circ}(iy) + t} \chi(z),$

hence the relation $\overset{\circ}{R}_{w}u' \in \mathfrak{P}$, i.e. $\overset{\circ}{R}_{w}u' \perp h_{0}$, is equivalent to

$$\lim_{y \to +\infty} \frac{y}{q_{\hat{A}}(iy) + t} \left[\chi(iy), \mathring{R}_{w}^{-} u' \right] = 0.$$

By (4.3) and the fact that $\left[\chi(z), \mathring{R}_w^{-}u'\right]$ is the right upper entry of the Nevanlinna kernel of the Potapov–Ginzburg transform of W (see [KW3]), this limit relation is equivalent to (4.4). We conclude from Proposition 4.3 that W is a generalized resolvent matrix in a degenerated space.

Conversely, if W can be represented as such, then \check{A} is a proper relation and the limit (4.5) is zero for all $A \neq \mathring{A}$. Since

$$\liminf_{y \to +\infty} \left| \frac{q_{\mathring{A}}(iy)}{y} \right| \neq 0,$$

it follows from the representation (4.9) that $\alpha_A = t + 2 \operatorname{Re} q_{\hat{A}}(z_0)$. Since the point $z_0 \in \rho(A) \cap \rho(\hat{A})$ in (4.9) can be chosen such that $q_{\hat{A}}(z_0) \neq -t$, the condition (4.3) follows. By the previous step of this proof also (4.4) follows. \Box

5. Associated functions of degenerated dB-spaces

In [dB] L. DE BRANGES developed a theory of Hilbert spaces of entire functions subject to certain additional conditions. Some parts of this theory have been generalized to indefinite inner product spaces $\langle \mathfrak{P}, [\cdot, \cdot] \rangle$, which satisfy besides **(D1)** and **(D2)** the following axioms:

(dB1) The space \mathfrak{P} consists of entire functions. If (\cdot, \cdot) denotes a Hilbert space inner product associated with $[\cdot, \cdot]$, then $\langle \mathfrak{P}, (\cdot, \cdot) \rangle$ is a reproducing kernel space. (dB2) If $F \in \mathfrak{P}$, then $\overline{F(\overline{z})}$ also belongs to \mathfrak{P} and

$$\left[\,\overline{F(\overline{z})},\overline{G(\overline{z})}\,\right] \;=\; \left[G(z),F(z)\right], \quad F\,,\,G\in\mathfrak{P}\,.$$

(dB3) If $w \in \mathbb{C} \setminus \mathbb{R}$ and $F \in \mathfrak{P}$, F(w) = 0, then $\frac{z-\overline{w}}{z-w}F(z) \in \mathfrak{P}$. If moreover $G \in \mathfrak{P}$, $G(\overline{w}) = 0$, then

$$\left[\frac{z-\overline{w}}{z-w}F(z),G(z)\right] = \left[F(z),\frac{z-w}{z-\overline{w}}G(z)\right].$$

We call such spaces dB-spaces.

An entire function U(z) is said to be an associated function for the dB-space \mathfrak{P} , if for one and hence for all $F \in \mathfrak{P}$, $w \in \mathbb{C}$, $F(w) \neq 0$,

$$\frac{U(z)F(w) - F(z)U(w)}{z - w} \in \mathfrak{P}.$$

If \mathfrak{P} is a nondegenerated dB-space, it is shown in [KW4], Section 10, that the space \mathfrak{P}_{-} can be identified with the set of associated functions for \mathfrak{P} . The notion of triplet spaces in the degenerated situation, as introduced in the previous sections, enables us to supplement this result by proving that also if \mathfrak{P} is a degenerated dB-space, one can identify \mathfrak{P}_{-} with the set of associated functions for \mathfrak{P} .

In the following let \mathfrak{P} be a dB-space and assume that dim $\mathfrak{P}^{\circ} = \Delta > 0$. For simplicity we assume moreover that for all $w \in \mathbb{C}$ there exists a function $F \in \mathfrak{P}$ with $F(w) \neq 0$. We remark that this may be assumed without loss of generality. The symmetric relation S under consideration is the operator of multiplication by the independent variable

$$(SF)(z) := zF(z),$$

where dom $S := \{F \in \mathfrak{P} \mid zF(z) \in \mathfrak{P}\}$. Clearly the regularity condition (R1) is fulfilled, in fact S has no eigenvalues at all. We have

$$\operatorname{ran}\left(S-w\right) = \left\{F \in \mathfrak{P} \mid F(w) = 0\right\},\$$

hence S has defect index (1, 1), satisfies (**R2**) and is minimal, i.e.

$$\bigcap_{w \in \mathbb{C}} \operatorname{ran} \left(S - w \right) \; = \; \{ 0 \}$$

Let $h_1 \in \mathfrak{P}$ and $\overset{\circ}{A} \subseteq \mathfrak{P}_c^2$ be chosen in accordance with Section 3, (3.10), and let $z_0 \in \rho(\overset{\circ}{A})$ be such that $h_1(z_0) \neq 0$. The functional $\Phi : \mathfrak{P}_c \to \mathbb{C}$ defined by

$$\Phi F := \begin{cases} F(z_0), & F \in \mathfrak{P}, \\ 0, & F \in \mathfrak{P}', \end{cases}$$

is continuous, hence can be represented as

$$\Phi F = [F, \phi(\overline{z_0})],$$

for some element $\phi(\overline{z_0}) \in \mathfrak{P}_c$. Note that $\phi(\overline{z_0}) \notin \mathfrak{P}$ and $\phi(\overline{z_0}) \perp \operatorname{ran}(S - z_0)$. Define elements $\phi(z)$ by

$$\phi(z) := \left(I + (z - \overline{z_0}) \left(\overset{\circ}{A} - z\right)^{-1}\right) \phi(\overline{z_0}), \quad z \in \rho \left(\overset{\circ}{A}\right).$$

Then $\begin{pmatrix} \phi(z) \\ z\phi(z) \end{pmatrix} \in S^*$ and since $h_1 \in \mathring{A}(0)$ the value $[h_1, \phi(z)] = h_1(z_0)$ is constant and nonzero.

Now we associate to each element $u \in \mathfrak{P}_{-}$ a function $\hat{u}(z)$ which is, at the first sight, analytic on $\rho(\mathring{A})$:

$$\hat{u}(z) := \frac{h_1(z)}{h_1(z_0)} \left[u, \left(\frac{\phi(\overline{z})}{\overline{z}\phi(\overline{z})} \right) \right]_{\pm}$$

It will turn out in the sequel that \hat{u} is in fact entire. Since

cls
$$\left(\left\{\phi(z) \mid z \in \rho(\overset{\circ}{A})\right\} \cup \mathfrak{P}^{\circ}\right) = \mathfrak{P}_{c},$$

we conclude similar as in [KW3], Lemma 3.5, to obtain

$$\mathfrak{P}_{c,+} = \operatorname{cls}\left(\left\{ \left(\begin{array}{c} \phi(z) \\ z\phi(z) \end{array} \right) \mid z \in \rho(\overset{\circ}{A}) \right\} \cup (\mathfrak{P}^{\circ} \times \mathfrak{P}^{\circ}) \right).$$

Hence the correspondence $u \mapsto \hat{u}$ is one-to-one. Note that for $F \in \mathfrak{P}$ we have $\widehat{(\iota F)}(w) = F(w)$. This follows for $w \in \rho(\overset{\circ}{A})$, $h_1(w) \neq 0$, since then we may write $F(z) = F_1(z) + \frac{F(w)}{h_1(w)} h_1(z)$ for some $F_1 \in \operatorname{ran}(S-w)$, and hence the following relation holds:

$$\widehat{(\iota F)}(w) = \frac{h_1(w)}{h_1(z_0)} \left[\iota F, \left(\frac{\phi(\overline{w})}{\overline{w}\phi(\overline{w})} \right) \right]_{\pm,c}$$
$$= \frac{h_1(w)}{h_1(z_0)} \left[F, \phi(\overline{w}) \right]$$
$$= \frac{h_1(w)}{h_1(z_0)} \left[\frac{F(w)}{h_1(w)} h_1, \phi(\overline{w}) \right]$$
$$= F(w).$$

Now we come to the mentioned connection of \mathfrak{P}_{-} with the set of associated functions for \mathfrak{P} .

Proposition 5.1. Let \mathfrak{P} be a degenerated dB-space. An entire function G(z) is an associated function for \mathfrak{P} if and only if $G = \hat{u}$ for some $u \in \mathfrak{P}_{-}$.

Proof. Let $u \in \mathfrak{P}_{-}$, then by Lemma 3.2 we have $\mathring{R}_{z}^{-} u \in \mathfrak{P}$. Hence

$$\begin{pmatrix} \mathring{R}_{z}^{-} u \end{pmatrix}(w) = \frac{h_{1}(w)}{h_{1}(z_{0})} \begin{bmatrix} \mathring{R}_{z}^{-} u, \phi(\overline{w}) \\ \overline{R}_{z}^{-} u, \phi(\overline{w}) \end{bmatrix}$$

$$= \frac{h_{1}(w)}{h_{1}(z_{0})} \begin{bmatrix} u, \mathring{R}_{\overline{z}}^{+} \phi(\overline{w}) \\ \end{bmatrix}_{\pm}$$

$$= \frac{h_{1}(w)}{h_{1}(z_{0})} \cdot \frac{1}{w - z} \left(\begin{bmatrix} u, \left(\frac{\phi(\overline{w})}{\overline{w}\phi(\overline{w})} \right) \end{bmatrix}_{\pm} - \begin{bmatrix} u, \left(\frac{\phi(\overline{z})}{\overline{z}\phi(\overline{z})} \right) \end{bmatrix}_{\pm} \right)$$

$$= \frac{1}{w - z} \left(\widehat{u}(w) - \frac{h_{1}(w)}{h_{1}(z)} \widehat{u}(z) \right),$$

and we conclude that \hat{u} is entire and associated for \mathfrak{P} .

Let ker $R_w^- \cap \mathfrak{P}_-$ = span $\{k\}$ (compare Lemma 3.2) and let $z_1 \in \rho(\mathring{A})$ be such that $h(z_1) \neq 0$, $\hat{k}(z_1) \neq 0$. If $F \in \mathfrak{P}$ is given, there exists an element $u \in \mathfrak{P}_-$ such that $F = \mathring{R}_{z_1}^- u$. By our choice of z_1 , we may assume moreover that $\hat{u}(z_1) = 0$. The relation (5.1) shows that $F(w) = \frac{\hat{u}(w)}{w-z}$, i.e. $(w-z)F(w) = \hat{u}(w) \in \mathfrak{P}_-$. Since by [KW4], Lemma 4.5, every associated function G can be written as $(z-z_1)F(z) + F_1(z)$ with appropriate $F, F_1 \in \mathfrak{P}$, we are done. \Box

References

- [B] BEREZANSKY, YU.: Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc. Transl., 1968
- [dB] DE BRANGES, L.: Hilbert Spaces of Entire Functions, Prentice-Hall, London, 1968
- [DS] DIJKSMA, A., and DE SNOO, H.: Symmetric and Selfadjoint Relations in Krein Spaces I, Oper. Theory Adv. Appl. 24 (1987), 145–166, Birkhäuser Verlag, Basel
- [GG] GORBACHUK, M. L., and GORBACHUK, V. I.: M.G. Krein's Lectures on Entire Operators, Oper. Theory Adv. Appl. 97, Birkhäuser Verlag, Basel, 1997
- [HLS] HASSI, S., LANGER, H., and DE SNOO, H.: Selfadjoint Extension for a Class of Symmetric Operators with Defect Numbers (1,1), 15th OT Conference Proceedings, 115–145, IMAR, Bucarest, 1995
- [HSW] HASSI, S., DE SNOO, H., and WORACEK, H.: Some Interpolation Problems of Nevanlinna– Pick Type. The Krein–Langer Method, to appear in Oper. Theory Adv. Appl.
- [IKL] IOHVIDOV, I. S., KREIN, M. G., and LANGER, H.: Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, Akademie Verlag, Berlin, 1982
- [KW1] KALTENBÄCK, M., and WORACEK, H.: On Representations of Matrix Valued Nevanlinna Function by u-Resolvents, to appear in Math. Nachr.
- [KW2] KALTENBÄCK, M., and WORACEK, H.: The Krein Formula for Generalized Resolvents in Degenerated Inner Product Spaces, to appear in Monatsh. Math.
- [KW3] KALTENBÄCK, M., and WORACEK, H.: Generalized Resolvent Matrices and Spaces of Analytic Functions, preprint
- [KW4] KALTENBÄCK, M., and WORACEK, H.: Pontryagin Spaces of Entire Functions I, to appear in Integral Equations Operator Theory
- $[\text{KL}] \qquad \text{KREIN, M. G., and LANGER, H.: Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume <math display="inline">\Pi_{\kappa}$ zusammenhängen. II. Verallgemeinerte Resolventen, u-resolventen und ganze Operatoren, J. Funct. Anal. **30** (1978), 390–447

[LT] LANGER, H., and TEXTORIUS, B.: L–Resolvent Matrices of Symmetric Linear Relations with Equal Defect Numbers, Integral Equations Operator Theory **5** (1982), 208–243

Institut für Analysis und Technische Mathematik TU Wien Wiedner Hauptstr. 8–10/114.1 A–1040 Wien Austria