
PONTRYAGIN SPACES OF ENTIRE FUNCTIONS I

M.KALTENBÄCK, H.WORACEK

We give a generalization of L.de Branges theory of Hilbert spaces of entire functions
to the Pontryagin space setting. The aim of this - first - part is to provide some
basic results and to investigate subspaces of Pontryagin spaces of entire functions.
Our method makes strong use of L.de Branges’s results and of the extension theory of
symmetric operators as developed by M.G.Krein.

1 Introduction

In [dB1]-[dB6] L. de Branges developed a theory of Hilbert spaces P, which consist of entire
functions and satisfy certain additional axioms:

(i) P is a reproducing kernel space.

(ii) The mapping F (z) 7→ F (z) is an (antilinear) isometry of P onto itself.

(iii) If F ∈ P, w ∈ C \ R, and F (w) = 0, then F (z) z−w
z−w

∈ P and has the same norm as
F (z).

If P satisfies these axioms we shall speak of a dB-Hilbert space. A main subject of the theory
of such spaces is to determine those subspaces of a given dB-Hilbert space, or more general

those subspaces of a given space L2(µ), which are again dB-Hilbert spaces. L. de Branges
proved that these subspaces (satisfying a certain additional condition) form a chain with

respect to inclusion. The spaces belonging to this chain are related by an integral equation,
or equivalently by a so-called canonical system of differential equations.

An example for such a situation can be obtained by using the theorem of Payley

and Wiener describing the Fourier transforms of L2(R) functions with compact support. The
Payley-Wiener space Pa, 0 < a < ∞, is the space of all entire functions F of exponential

type at most a such that F |R ∈ L2(R), endowed with the L2(R)-norm. The chain (Pa)a∈(0,∞)

of subspaces of L2(R) is exactly the chain of subspaces in the above described sense.

The mentioned results find various applications, for example in the solution of
inverse spectral problems and related questions (see e.g. [DK], [KL4], [KL5], [W]).

Independently, M.G.Krein developed a theory of entire operators (see e.g. [K2],
[K3], [K6], [GG]) and studied their selfadjoint extensions. Such operators play, besides their



theoretical interest, an important role in various classical problems (compare e.g. [K1], [K4]).
For example the continuation problem of a positive definite function on a finite interval gives

rise to an entire operator.
It turns out that there exists an intimate connection between these two theories.

In fact, an entire operator can be represented as the operator of multiplication by the in-
dependent variable in a conveniently chosen dB-Hilbert space. Under a certain additional

condition also the converse is true. Moreover, so called transfer matrices, which play a vital

role in the theory of dB-subspaces, have been identified as resolvent matrices in the sense of
[KL3] or [KW].

The present paper is concerned with a generalization of L.de Branges’s theory to
indefinite inner product spaces. More precisely, we consider inner product spaces P, con-

sisting of entire functions, such that the isotropic part P◦ of P has finite dimension, P/P◦

is a Pontryagin space and which satisfy additional axioms similar to (i)-(iii). Some basic

results concerning such dB-spaces are given and subspaces of a given dB-space which are
themselves dB-spaces are studied. In particular, we obtain that the dB-subspaces form a

chain and are connected by transfer matrices.
Although our presentation is based on [dB1]-[dB6] and [dB7], the proofs rely in many

cases on the above mentioned connection with M.G.Krein’s theory and on results given in
an operator theoretic context concerning selfadjoint extensions of symmetric operators.
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The preliminary Section 2 contains some results concerning Nevanlinna functions which are
derived from their well known integral representation (compare [KL2]). The rest of the paper

splits into three parts.
In Sections 3-7 we develop a basic theory of dB-spaces, and study the operator S

of multiplication by the independent variable in such spaces. Section 3 contains the proper
definition of a dB-space, and it is shown that for each dB-space P there exists a positive



definite inner product on the same set of entire functions which turns P into a dB-Hilbert
space. This allows us to use the results given in [dB1]-[dB6]. In Section 5 we show that,

similar as in the Hilbert space case, a nondegenerated dB-space is determined by a single
entire function E(z) with specific properties. Also the converse result holds. Sections 4 and

6 deal with the operator S and its extensions, in particular with its selfadjoint extensions.
The extensions of S correspond to certain entire functions, the so-called associated functions.

We determine those associated functions which correspond to selfadjoint extensions of S and

compute the respective Q-functions. Finally, in Section 7, we discuss decompositions of a
(nondegenerated) dB-space, which relate to the spectral decomposition of such a Q-function.

This result gives an analogue to the notion of a phase function in [dB7].
The Sections 8 and 9 deal with matrix functions which satisfy a certain kernel

relation. In these sections results concerning resolvent matrices come into play. Via the so-
called Potapov-Ginzburg transformation, spectral properties of matrix Nevanlinna functions

are used to obtain results on the structure of the reproducing kernel space generated by
the above mentioned matrix kernel. In Section 10 these results are applied to obtain a

characterization of associated functions. In this context there occurs the notion of generalized
elements or triplet spaces in the sense of [KW].

Sections 11-13 are devoted to the study of subspaces of a given dB-space. First
we collect some basic results which follow from [dB7]. The main subject of Section 11 is

to show that only finitely many members of the (unique) chain of subspaces of a given
dB-space can be degenerated. In Sections 12 and 13 transfer matrices of nondegenerated

subspaces of a dB-space are investigated. The existence and uniqueness of such matrices and

their factorizations is essential for the construction of the canonical system (of differential
equations) connected with the chain of subspaces.

Concerning the theory of inner product spaces we use the notation and results of
[IKL] (or [B]), concerning symmetric and selfadjoint operators (or relations) we use [DS1]

and [L]. Our standard reference for the theory of Hilbert spaces of entire functions is [dB7].
The results on resolvent matrices and generalized elements are taken from [KW] (compare

also [KL3]). We also use the notion of reproducing kernel Pontryagin spaces and some results
which can be found in [ADSR1] (see also [dB8], [ADSR2], [ADSR3]).

It will be the subject of a forthcoming note to study the subspaces of L2(µ) (un-
derstood in a certain distributional sense), the canonical system of differential equations

associated with a chain of subspaces and to give some applications.

2 Some results on Nevanlinna functions

In this preliminary section we give some results concerning Nevanlinna functions, which will
be useful later. First let us recall the notion of a Nevanlinna function.

Definition 2.1. An n×n-matrix valued function Q, which is analytic in an open set O 6= ∅,
is said to be element of the Nevanlinna class N n×n

κ , if Q(z) = Q(z)∗, whenever z, z ∈ O, and



if the kernel

NQ(z, w) =
Q(z) −Q(w)∗

z − w
, z, w ∈ O,

has κ negative squares.

It is well known that Q can be continued analytically to its maximal domain of
holomorphy ρ(Q) which contains C \ R with a possible exception of a finite number of

points.
For abbreviation we write Nκ instead of N 1×1

κ . The reproducing kernel Pontryagin

space generated by the kernel NQ for a Nevanlinna function Q (compare [ABDS1]) is denoted
by K(Q).

It has been proved in [KL2] that a function Q, meromorphic in C+, which belongs
to Nκ allows an integral representation:

Q(z) =

∫ ∞

−∞

(

1

t− z
−

r∑

j=0

χj(t)Sj(t, z)

)

ϕ(t)(1 + t2)dσ(t) +R0(z)+

+
r∑

j=1

Rj(
1

αj − z
) +

s∑

k=1

(

Tk(
1

z − βk

) + Tk(
1

z − βk

)#

)

. (2.1)

Here r ≥ 0, s ≥ 0, α1, . . . , αr ∈ R are the so called critical points of Q and β1, . . . , βs ∈ C+.
The function σ is a nondecreasing bounded function on R, and is continuous from the left.

The function ϕ(t) is given by

ϕ(t) = (1 + t2)ρ0

r∏

j=1

(1 + t2)ρj

(t− αj)2ρj
,

where ρj , j = 1, . . . , r, is the order of the critical point αj , and ρ0 is the order of the point

∞ as a critical point of Q. Moreover, R0 and Rj , j = 1, . . . , r, are polynomials with real
coefficients, of degree ≤ 2ρ0 + 1 and ≤ 2ρj , respectively, and Rj(0) = 0, j = 1, . . . , r. Tk are

polynomials with Tk(0) = 0. The expressions Sj(t, z) are given by

Sj(t, z) = −

2ρj∑

i=1

(t− αj)
i−1

(z − αj)i
, j = 1, . . . , r,

S0(t, z) = (t+ z)

ρ0+1
∑

i=1

(1 + z2)i−1

(1 + t2)i
,

and χj is the characteristic function of Uj , where U0, Uj , j = 1, . . . , r, are pairwise disjoint
neighbourghoods of ∞ and αj, respectively. If deg Tk = τk, it is proved in [KL2] that

r∑

j=0

ρj +
s∑

k=1

τk = κ. (2.2)

We may assume that, if ρj > 0 or ρ0 > 0,
∫ ∞

−∞

dσ(t)

(t− αj)2
= ∞,

∫ ∞

−∞

t2dσ(t) = ∞.



We shall use this integral representation to prove the following results.

Proposition 2.2. Assume that Q1 and Q2 are meromorphic functions in C+ which allow

a continuous extension to R, and that Q1 ∈ Nκ1, Q2 ∈ Nκ2. If ImQ1(x) = ImQ2(x) for

x ∈ R, we have

Q1(z) −Q2(z) =

s1∑

k=1

(

T1,k(
1

z − β1,k

) + T1,k(
1

z − β1,k

)#

)

−

−
s2∑

k=1

(

T2,k(
1

z − β2,k

) + T2,k(
1

z − β2,k

)#

)

+ p(z),

where p(z) is a polynomial with real coefficients, and

deg p(z) ≤ 2 max

{

κ1 −
s1∑

k=1

deg T1,k(z), κ2 −
s2∑

k=1

deg T2,k(z)

}

+ 1. (2.3)

Proof : Consider the integral representation (2.1) of Q1 (Q2). The terms involving R1,0

(R2,0) and T1,k (T2,k) are analytic on R and assume there real values. Hence we only need

to consider the integral terms and the terms involving R1,j (R2,j), j ≥ 1.
Let α1, . . . , αr ∈ R be those points which are critical points either for Q2 or for Q2,

and denote by ρ1,j, ρ2,j the respective orders. Note that if α1 is critical, say for Q1 but not
for Q2, we put ρ2,j = 0. Choose pairwise disjoint right open intervals Uj, j = 1, . . . , r, such

that Uj contains αj in its interior. Moreover, let U0 := R \ [−N,N) where N is sufficiently

large in order that Uj ∩ U0 = ∅ for all j. Denote by χj , j = 0, 1, . . . , r, the characteristic
function of the set Uj .

The, for our purposes, essential terms in the integral representation of Q1 (Q2) are

f1(z) :=

∫ ∞

−∞

(

1

t− z
−

r∑

j=0

χj(t)S1,j(t, z)

)

ϕ1(t)(1 + t2)dσ1(t)+

+

r∑

j=1

R1,j(
1

αj − z
),

f2(z) :=

∫ ∞

−∞

(

1

t− z
−

r∑

j=0

χj(t)S2,j(t, z)

)

ϕ2(t)(1 + t2)dσ2(t)+

+
r∑

j=1

R2,j(
1

αj − z
).

Consider a critical point αj. We show that ρ1,j = ρ2,j . Without loss of generality assume
that ρ1,j ≥ ρ2,j and that for sufficiently small δ > 0

∫ αj+δ

αj−δ

dσ1(t)

(t− αj)2
= ∞.



If we put F1(z) := (z − αj)
2ρ1,jf1(z) and F2(z) := (z − αj)

2ρ2,jf2(z), we have by [KL2]

F1(z) =

∫ ∞

−∞

(χj(t)
1

t− z
+ (1 − χj(t))ψ1(z, t))(t− αj)

2ρ1,jϕ1(t)(1 + t2)dσ1(t)+

+(z − αj)
2ρ1,j

r∑

j=1

R1,j(
1

αj − z
),

and

F2(z) =

∫ ∞

−∞

(χj(t)
1

t− z
+ (1 − χj(t))ψ2(z, t))(t− αj)

2ρ2,jϕ2(t)(1 + t2)dσ2(t)+

+(z − αj)
2ρ2,j

r∑

j=1

R2,j(
1

αj − z
),

where ψ1 (ψ2) collect all expressions which occur for t 6∈ Uj . The last sum in the expressions
F1, F2 is analytic at αj . Applying twice the Stieltjes-Livsic inversion formula (see [GG]), we

obtain for a, b ∈ Uj, a < b

∫ b

a

(t− αj)
2ρ1,jϕ1(t)(1 + t2)dσ1(t) = lim

εց0

1

π

∫ b

a

ImF1(u− iε)du =

=
1

π

∫ b

a

u2ρ1,j Im f1(u)du =
1

π

∫ b

a

u2(ρ1,j−ρ2,j) Im (u2ρ2,jf2(u))du =

= lim
εց0

1

π

∫ b

a

(u− iε)2(ρ1,j−ρ2,j) ImF2(u− iε)du =

=

∫ b

a

t2(ρ1,j−ρ2,j)(t− αj)
2ρ2,jϕ2(t)(1 + t2)dσ2(t).

If ρ1,j > ρ2,j , we obtain for sufficiently small δ > 0 that
∫ αj+δ

αj−δ

dσ1(t)
(t−αj )2

< ∞, a contradiction.

Hence ρ1,j = ρ2,j .
A similar argument yields ρ1,0 = ρ2,0. Hence the integrands in the representation of

F1 and F2 are the same and we find, again appealing to the Stieltjes-Livsic inversion formula,
that dσ1(t) = dσ2(t).

The relation (2.3) follows from (2.2).

Corollary 2.3. Let Q ∈ N k×k
κ for k = 1 or k = 2 be given. Assume that Q is analytic

in C+, has a continuous extension to R, and satisfies ImQ(x) = 0 for x ∈ R. Then Q is a

polynomial of degree at most 2κ+ 1.
Proof : For scalar functions the assertion follows immediately from Proposition 2.2. If

Q ∈ N 2×2
κ consider the scalar functions a∗Q(z)a with the vectors

a =

(
1
0

)

,

(
0
1

)

,

(
1
i

)

,

(
1
1

)

.



Since by the already proved each of the scalar functions a∗Q(z)a is a polynomial, also Q(z)
itself must be a polynomial.

Recall that a scalar function which is meromorphic in a certain region O, is said to be of
bounded type (or bounded characteristic) if it can be written as quotient of two functions,

which are analytic and bounded in O (compare e.g. [H]). It is well known (and follows
immediately from some considerations in [dB7]) that for a function Q which is of bounded

type in C+ and has only finitely many singularities, we have

−∞ < mt Q := lim sup
y→∞

log |Q(iy)|

y
<∞.

We will refer to this number as the mean type of Q. Clearly a rational function is of bounded

type in C+ and has mean type 0.

Proposition 2.4. If Q ∈ Nκ, then Q is of bounded type in C+ and mt Q = 0.

Proof : Consider the integral in (2.1), and split it into the summands where integrations
runs through Uj , j = 1, . . . , r, U0 and the remaining part of the real axis. The formula (2.1),

together with [GG], imply that Q is of bounded type in C+ and that mt Q ≤ 0. Since with
Q also − 1

Q
belongs to Nκ, we find mt Q = 0.

3 de Branges spaces of entire functions

In this section we introduce certain inner product spaces whose elements are entire functions.

This generalizes the construction of [dB7].
Let 〈P, (., .)〉 be a Hilbert space whose elements are entire functions, and assume

that for each w ∈ C there exists a number γw ≥ 0, such that

|F (w)| ≤ γw‖F‖, F ∈ P, (3.1)

i.e. assume that 〈P, (., .)〉 is a reproducing kernel Hilbert space. Moreover, let G be a self-

adjoint operator on P, such that for some ε > 0 the set σ(G) ∩ (−∞, ε) consists only of a
finite number of eigenvalues of finite multiplicity. If we endow P with the new inner product

[., .] := (G., .), the space 〈P, [., .]〉 has the following properties:

(i) The isotropic part P◦ of P is finite dimensional.

(ii) The factor space P/P◦ is a Pontryagin space.

The condition (3.1) shows that, if 0 6∈ σ(G), the space 〈P, [., .]〉 is a reproducing kernel

Pontryagin space, i.e. there exist elements K(w, z) ∈ P, w ∈ C, such that

F (w) = [F (z), K(w, z)], F ∈ P.



In the following denote by F# the function F#(z) := F (z). A function F with F = F# is
called real. Note that any function F can be decomposed into its ”real-” and ”imaginary-”

part by

F =

(
F + F#

2

)

− i

(

i
F − F#

2

)

. (3.2)

Definition 3.1. Consider the space 〈P, [., .]〉, where [., .] = (G., .) is subject to the above

conditions. Then 〈P, [., .]〉 is called a de Branges inner product space (dB-space), if it satisfies
the following axioms:

(i) If F ∈ P, then F# ∈ P. Moreover,

[F#, G#] = [G,F ], F,G ∈ P. (3.3)

(ii) If w ∈ C \ R and F ∈ P, F (w) = 0, then the function z−w
z−w

F (z) is also contained in P.

Moreover, if F,G ∈ P, F (w) = 0, G(w) = 0, then

[
z − w

z − w
F (z), G(z)] = [F (z),

z − w

z − w
G(z)]. (3.4)

If 0 6∈ σ(G) (G > 0) we call 〈P, [., .]〉 a dB-Pontryagin (dB-Hilbert) space.
Our first aim is to show that to each dB-space there corresponds in a natural way

a dB-Hilbert space. This allows us, up to a certain extend, to use the theory developed in
[dB7].

Lemma 3.2. Let 〈P, (., .)〉 be given, let G and G1 be subject to the above conditions and

assume that 〈P, (G., .)〉 is a dB-space. Then 〈P, (G1., .)〉 is a dB-space if and only if (3.3)
and (3.4) hold with G replaced by T := G1 − G.

Proof : If F,G ∈ P, we have

(G1F,G) = (GF,G) + (T F,G).

Since G satisfies (3.3) and (3.4), the assertion follows.

Theorem 3.3. Let 〈P, (G., .)〉 be a dB-space. Then there exists a finite rank perturbation
G1 of G, such that 〈P, (G1., .)〉 is a dB-Hilbert space.

Proof : Denote by K ′(w, z) ∈ P the reproducing kernel of the Hilbert space 〈P, (., .)〉. Let

{t1, t2, . . .} ⊆ R be a sequence which has a finite accumulation point. Since P consists of
entire functions, the linear subspace

L := span {K ′(ti, z)|i = 1, 2, . . .}

is dense in P.



According to the spectral decomposition (Et)t∈R of G we write G = G+ −G− where
G− := −E(−∞,0]G and G+ := E(0,∞)G. It follows from our assumption on G that G+|E(0,∞)P >

> 0 and that G− is finite dimensional. Note that G− ≥ 0, hence we may write (n =
dimE(−∞,0]P):

G− =

n∑

j=1

λj(., ej)ej ,

where 0 ≤ λ1 ≤ . . . ≤ λn, (ei, ej) = 0 for i 6= j and (ei, ei) = 1. We set

G− :=

n∑

j=1

(1 + λn)(., ej)ej = (1 + λn)

n∑

j=1

(., ej)ej .

Then clearly G−|E(−∞,0]P >> G−|E(−∞,0]P ≥ 0 and hence G+ + G− >> 0. Since L is dense in P

there exist, for arbitrary ε > 0, elements f1, . . . , fn ∈ L, such that with

Gε := (1 + λn)

n∑

j=1

(., fj)fj

we have ‖G− − Gε‖ < ǫ. For sufficiently small ε we obtain

0 << G+ + G− − 2(G− − Gε) = G+ − G− + 2Gε ≤

≤ G+ − G− + 2Gε = G + 2Gε.

This implies that the hermitian form (., .)0 := ((G +2Gε)., .) is positive definite and topolog-
ically equivalent to (., .).

Now let t1, . . . , tm be such that f1, . . . , fn ∈ span {K ′(t1, z), . . . , K
′(tm, z)}, then we

can write

fj =

m∑

k=1

µj
kK

′(tk, z), j = 1, . . . , n.

Define a hermitian form (., .)1 on P by

(F,G)1 := [F,G] + C

m∑

k=1

F (tk)G(tk), F,G ∈ P

with C = 2(1 + λn)
∑n

j=1

∑m
k=1 |µ

j
k|

2. We calculate for F ∈ P

(F, F )0 = [F, F ] + 2(1 + λn)
n∑

j=1

m∑

k,l=1

µj
kµ

j
l (K

′(tk, z), F )(F,K ′(tl, z)) =

= [F, F ] + 2(1 + λn)
n∑

j=1

m∑

k,l=1

µj
kµ

j
lF (tk)F (tl) ≤

≤ [F, F ] + 2(1 + λn)
n∑

j=1

(
m∑

k=1

|µj
k|

2)(
m∑

k=1

|F (tk)|
2) = (F, F )1,



Hence (., .)1 is a positive definite inner product on P which is equivalent to (., .). Moreover,
we find (., .)1 = (G1., .) with the finite rank perturbation

G1 := G + C
m∑

k=1

(., K ′(tk, z))K
′(tk, z)

of G.
Let F,G ∈ P, then F#(ti)G#(ti) = G(ti)F (ti). Moreover, if F (w) = 0 and G(w) =

0, then
ti − w

ti − w
F (ti)G(ti) = F (ti)

ti − w

ti − w
G(ti).

By Lemma 3.2 the space 〈P, (., .)1〉 is a dB-Hilbert space.

4 The operator of multiplication by the independent

variable

If a function F is analytic or has an isolated singularity at a point w ∈ C, we denote by

OrdwF ∈ Z ∪ {±∞} the order of w as a zero (minus the order of w as a pole) of F . More
precisely, if F has the Laurent expansion

F (z) =
∑

n∈Z

an(z − w)n

at w, then OrdwF := inf{n ∈ Z|an 6= 0}. We have OrdwF = +∞ if and only if F ≡ 0,
and OrdwF = −∞ if and only if F has an essential singularity at w. Note that Ordw

1
F

=

−OrdwF , and that for two functions F and G for which OrdwF and OrdwG is finite, we
have

Ordw(F ·G) = OrdwF + OrdwG, Ordw(F +G) ≥ min(OrdwF,OrdwG),

where strict inequality can occur only if OrdwF = OrdwG.

We assume in the sequel that 〈P, [., .]〉 is a dB-space. The operator of multiplication
by the independent variable is defined as

(SF )(z) := zF (z), F ∈ domS,

where
domS := {F ∈ P|zF (z) ∈ P}.

Note that the definition of S does not depend on the choice of an inner product.
For a given dB-space P, the function d(P) : C → N ∪ {0} defined by

d(P)(w) := min
F∈P

OrdwF , w ∈ C, (4.1)



is called the divisor associated with P. Making use of Theorem 3.3, the results of [dB7]
imply:

Lemma 4.1. Let P be a dB-space. Then d(P)(w) = 0 for all w ∈ C \ R. The axiom

(ii) of Definition 3.1 can be strengthened in the following sense: If F ∈ P, w ∈ C and
OrdwF > d(P)(w), then the function G(z) := F (z)

z−w
is also contained in P.

Proposition 4.2. The operator S is closed and symmetric, the codimension of domS in
P is either 0 or 1. The defect index of S is (1, 1), in fact

ran (S − w) = {F ∈ P|OrdwF > d(P)(w)}, w ∈ C, (4.2)

and codim ran (S−w) = 1 for all w ∈ C. The operator S is real with respect to the involution
#.

Proof : It is proved in [dB7] that, in case of a dB-Hilbert space, the assertions of Proposition
4.2 hold. The fact that the definition of S does not depend on the choice of an inner product

shows with the aid of Theorem 3.3 that S is closed, satisfies (4.2), has defect index (1, 1),

and that codim domS is either 0 or 1.
It follows from the axiom (ii) of Definition 3.1, that S is symmetric. In fact, for

w ∈ C \ R, S is the Cayley transform (compare [DS1]) of the isometry

Vw : F (z) 7→
z − w

z − w
F (z), F ∈ ran (S − w). (4.3)

The fact that S is real, i.e. satisfies S(F#) = (SF )# for F ∈ domS, is obvious from the
definition of S.

Corollary 4.3. Whenever M ⊆ C has a finite accumulation point, we have
⋂

w∈M

ran (S − w) = {0}. (4.4)

If P is a dB-Pontryagin space, K(w, z) denotes the reproducing kernel of the space 〈P, [., .]〉
and w ∈ C is such that d(P)(w) = 0, then

ran (S − w)[⊥] = span {K(w, z)}. (4.5)

Proof : Since P consists of entire functions, the relations (4.4) and (4.5) are an immediate

consequence of (4.2).

By (4.4) S has no eigenvalues. Note that, if P is a dB-Pontryagin space and d(P)(M) = {0},
the relation (4.4) is equivalent to

span {K(w, z)|w ∈M} = P,



hence we may speak of S as a simple operator in the sense of [KL3].

Definition 4.4. An entire function S(z) is said to be associated to the dB-space P, if

there exists a number w ∈ C and a function F ∈ P with F (w) 6= 0, such that

F (z)S(w) − S(z)F (w)

z − w
∈ P. (4.6)

The set of associated functions will be denoted by Ass P.
Since the definition of an associated function does not depend on the inner product

of P, we can use the results developed in [dB7]. Recall that P ⊆ Ass P and that, if
S ∈ Ass P, the relation (4.6) holds in fact for each w ∈ C and F ∈ Ass P.

Let us recall that the set Ass P can easily be constructed from P itself.

Lemma 4.5. Let S0 ∈ Ass P and let z0 ∈ C be such that S0(z0) 6= 0. Then

Ass P = (z − z0) · P + C · S0(z).

Proof : Assume that S ∈ Ass P. Then

F (z) :=
S(z) − S0(z)

S0(z0)
S(z0)

z − z0
∈ P,

and hence

S(z) = (z − z0)F (z) +
S(z0)

S0(z0)
S0(z).

Conversely, let F ∈ P and λ ∈ C be given. Then for any G ∈ P we have

((z − z0)F (z) + λS0(z))G(z0) −G(z)λS0(z0)

z − z0
= F (z)G(z0)+

+λ
S0(z)G(z0) −G(z)S0(z0)

z − z0
∈ P.

Note that, in particular, we can take in Lemma 4.5 for S0 any nonzero element of P, together
with a convenient number z0.

Proposition 4.6. The relations A ⊆ P2 which extend S and have nonempty resolvent set
correspond bijectively to the functions S ∈ Ass P. This correspondence is given by

(A− w)−1F (z) =
F (z) − S(z)

S(w)
F (w)

z − w
, w ∈ ρ(A), F ∈ P, (4.7)

and we have
ρ(A) ∩ C = {w ∈ C|OrdwS = d(P)(w)}. (4.8)



Moreover, A is a proper relation, i.e. A(0) 6= {0}, if and only if S ∈ P. In this case
A(0) = span {S(z)}.
Proof : Let S ∈ Ass P. A computation shows that the operator valued function (S(w) 6= 0)

RS(w) : F (z) 7→
F (z) − S(z)

S(w)
F (w)

z − w
, F ∈ P,

satisfies the resolvent identity

RS(w) −RS(w′) = (w − w′)RS(w)RS(w′).

It is proved in [dB7] that RS(w) is a bounded operator. By [DS1] there exists a relation A ⊆
P2, such that (4.7) holds. If F ∈ ran (S −w) we have F (w) = 0, hence RS(w) ⊇ (S −w)−1,

i.e. A extends S.
Conversely let A ⊆ P2, ρ(A) 6= ∅, A ⊇ S be given. Choose F ∈ P and w0 ∈ ρ(A),

such that F (w0) 6= 0. Consider the function

S(z) :=
1

F (w0)
(F (z) − (z − w0)(A− w0)

−1F (z)) ∈ Ass P,

then (A − w0)
−1 = RS(w0). By the resolvent identity and the analyticity of RS(w) this

relation holds for all w ∈ ρ(A), S(w) 6= 0.

The relation (4.8) follows from Lemma 4.1 and the fact that ρ(A) is the maximal
domain of holomorphy of RS(w). The last assertion follows since A being a proper relation

is equivalent to the fact that (A− w)−1 has a nontrivial kernel for all w ∈ C.

Note that the resolvent (A−w)−1 can be extended to Ass P by (4.7). Then for any F ∈ Ass P

the function S(w)(A− w)−1F (z) is entire with respect to z and w (in the norm of P).
Recall that a point w ∈ C is said to be of regular type for S, if there exists a number

γw > 0, such that
‖F‖ ≤ γw‖(S − w)F‖, F ∈ domS.

Corollary 4.7. The set of points of regular type of S equals C.
Proof : By Lemma 4.1 and Proposition 4.6 there exists an extension A of S with w ∈ ρ(A).

Hence w is a point of regular type.

5 Construction of dB-Pontryagin spaces by Hermite-

Biehler functions

In this section we show that a dB-Pontryagin space is completely determined by a single
entire function (in the case of a dB-Hilbert space compare besides [dB7] also [DK]).



Let us recall the notion of a Schur function and a Hermite-Biehler function (compare
[DLS] and [Le]). For a meromorphic function Q we denote in the following by ρ(Q) its domain

of holomorphy.

Definition 5.1. Let κ ∈ N∪{0}. By Sκ we denote the set of all functions Q, meromorphic
in C+, such that the kernel

SQ(z, w) := i
1 −Q(z)Q(w)

z − w
, z, w ∈ ρ(Q),

has κ negative squares. By HBκ we denote the set of all entire functions E, such that
E#

E
∈ Sκ, E and E# have no common nonreal zeros and E#

E
is not constant.

Note that, if we decompose E as in (3.2) as E = A− iB with real functions A and
B, the function E#

E
is constant if and only if A and B are linearly dependent. Moreover,

the common zeros of E and E# are exactly the common zeros of A and B. The following
remark shows that the set HBκ is nonempty.

Remark 5.2. Let Q ∈ Nκ be given, assume that Q is meromorphic in C and not constant.
Then Q = −A

B
with real entire functions A,B which have no common zeros. The function

E := A− iB belongs to HBκ.
Proof : Let ti, i ∈ N, be the real poles of Q, τi := −OrdtiQ, and let rj, rj, j = 1, . . . , k, be

the nonreal poles of Q, ρj := −Ordrj
Q. Denote by P (z) a Weierstraß product with zeros ti

of order τi, and define real entire functions B and A by

B(z) := P (z)
k∏

j=1

(z − rj)
ρj (z − rj)

ρj , A(z) := −Q(z)B(z).

Clearly A and B are linearly independent and have no common zeros. Moreover, an elemen-

tary calculation shows that (E := A− iB)

i
1 − E#(z)

E(z)
(E#(w)

E(w)
)

z − w
=
B(z)

E(z)

Q(z) −Q(w)

z − w
(
B(w)

E(w)
),

and we conclude that E ∈ HBκ.

Theorem 5.3. Let 〈P, [., .]〉 be a dB-Pontryagin space, and denote by K(w, z) its repro-
ducing kernel. Then

K(w, z) =
B(z)A(w) −A(z)B(w)

z − w
(5.1)

for some real entire functions A and B. We have E(z) := A(z) − iB(z) ∈ HBκ where

κ := Ind−P.
Conversely, if E ∈ HBκ is given, E(z) = A(z)− iB(z) with real entire functions A

and B, and K(w, z) is defined by (5.1), then the reproducing kernel Pontryagin space P(E)
with kernel K(w, z) is a dB-Pontryagin space.



Proof : First let a dB-Pontryagin space 〈P, [., .]〉 with reproducing kernel K(w, z) be given.
Since the function K(w, z) depends analytically on z and w and does not vanish identically

(for all z and w), there exists a nonreal number w0, such that K(w0, w0) 6= 0. In fact the
set of zeros of the function K(z, z) contains no interior point, is closed, and lies symmetric

with respect to the real axis.
As # is an antiisometry, we have K(w, z)# = K(w, z), in particular K(w,w) =

K(w,w). Choose w0 ∈ C \ R, such that K(w0, w0) Imw0 > 0, and define

E(z) := i

√
π

K(w0, w0) Imw0
(w0 − z)K(w0, z),

K̃(w, z) :=
E(z)E(w) −E#(z)E#(w)

−2πi(z − w)
.

By a straightforward calculation we obtain

K̃(w, z) =
i

2K(w0, w0) Imw0

[
|w0|2 − w(w0 + w0) + zw

z − w
(K(w0, z)K(w0, w)−

−K(w0, z)K(w0, w)) − w0K(w0, z)K(w0, w) + w0K(w0, z)K(w0, w)].

Let w ∈ C be such that d(P)(w) = 0. If F ∈ P, F (w) = 0, we find

−
2K(w0, w0) Imw0

i
[F (z), K̃(w, z)] = [F (z), (|w0|

2 − w(w0 + w0) + wS)(S − w)−1

(K(w0, z)K(w0, w) −K(w0, z)K(w0, w))] − w0K(w0, w)F (w0) + w0K(w0, w)F (w0) =

= [
|w0|2 − w(w0 + w0) + wz

z − w
F (z), K(w0, z)K(w0, w) −K(w0, z)K(w0, w)]−

−w0K(w0, w)F (w0) + w0K(w0, w)F (w0) = 0.

By Corollary 4.3, we have K̃(w, z) = c(w)K(w, z). The function c(w) is in fact a constant,

since
c(w)K(w,w0) = K̃(w,w0) = K̃(w0, w) = c(w0)K(w,w0).

Comparing K̃(w0, w0) and K(w0, w0), we find that c(w) = 1.
If we write E = A− iB with real entire functions A,B, we obtain (5.1). Moreover,

we have

K(w, z)

E(z)E(w)
=

1

2π
i
1 − E#(z)

E(z)
(E#(w)

E(w)
)

z − w
, (5.2)

hence E#(z)
E(z)

∈ Sκ with κ = Ind−P. Since K(w, z) does not vanish identically, E#(z)
E(z)

is not

constant. If E(w) = 0 and E#(w) = 0 for some number w ∈ C \ R, we have also A(w) = 0

and B(w) = 0, hence K(w, z) = 0, z ∈ C. This is not possible by Lemma 4.1. We conclude
that E ∈ HBκ.

Now let conversely a function E ∈ HBκ be given, and define an entire function
K(w, z) by (5.1). Clearly K(w, z) = K(z, w), hence K(w, z) depends analytically on w.



As the relation (5.2) holds, K(w, z) is a kernel function with κ negative squares. Hence,
the reproducing kernel Pontryagin space P := P(E) consists of entire functions and has

negative index κ (compare [ADSR1]). First we are concerned with the proof of axiom (ii) of
Definition 3.1. Choose w0 ∈ C \ R such that K(w0, w0) 6= 0. A straightforward calculation

shows that the relation
(

K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)

)
z − w0

z − w0

=

=

(

K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)

)
w − w0

w − w0
(5.3)

holds. Consider the mapping

Vw0 : F (z) 7→
z − w0

z − w0
F (z),

with domain

domVw0 := {F ∈ P|
z − w0

z − w0
F (z) ∈ P}.

By (5.3) we have

[Vw0

(

K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)

)

,Vw0

(

K(w′, z) −
K(w0, z)K(w′, w0)

K(w0, w0)

)

] =

[

(

K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)

)
w − w0

w − w0

, (K(w′, z)−

−
K(w0, z)K(w′, w0)

K(w0, w0)
)
w′ − w0

w′ − w0

] =

=
w − w0

w − w0

w′ − w0

w′ − w0

(

K(w,w′) −
K(w0, w

′)K(w,w0)

K(w0, w0)

)

=

=

(

K(w,w′) −
K(w0, w

′)K(w,w0)

K(w0, w0)

)

=

= [

(

K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)

)

,

(

K(w′, z) −
K(w0, z)K(w′, w0)

K(w0, w0)

)

],

i.e. Vw0 is an isometry of

domVw0 = span {K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)
|w ∈ C}

onto

ranVw0 = span {K(w, z) −
K(w0, z)K(w,w0)

K(w0, w0)
|w ∈ C}.

Since domVw0 = {F ∈ P|F (w0) = 0} and ranVw0 = {F ∈ P|F (w0) = 0} are both regular

subspaces of P, we may extend Vw0 to domVw0 by continuity, and obtain an isometry

Ṽw0 : {F ∈ P|F (w0) = 0} → {F ∈ P|F (w0) = 0}.



In particular, we find that

F (z)

z − w0

=
1

w0 − w0

(Ṽw0F (z) − F (z)) ∈ P,

whenever F ∈ P, F (w0) = 0.

If S denotes the operator of multiplication by the independent variable in P, we
may therefore write

Ṽw0F (z) =
z − w0

z − w0
F (z) = (S − w0)(S − w0)

−1F (z), F ∈ P, F (w0) = 0.

As we have seen above Ṽw0 is isometric, therefore its inverse Cayley transform S is symmetric.

It follows that each Cayley transform

(S − w)(S − w)−1, w ∈ C \ R,

is isometric. Since S is closed, has defect index (1, 1) and has no eigenvalues, we find (see

[DS1]) that for each w ∈ C \ R

dim ran (S − w)⊥ = 1.

Since E and E# have no common nonreal zeros, K(w, z) does not vanish identically for any

w ∈ C \ R. Hence

codim {F ∈ P|F (w) = 0} = 1, w ∈ C \ R,

which shows that

ran (S − w) = {F ∈ P|F (w) = 0}.

Therefore the axiom (ii) of Definition 3.1 is fullfilled.
In order to prove axiom (i) of Definition 3.1 note that by the definition of K(w, z)

K(w, z)# = K(w, z), w ∈ C.

We find

[K(w, z)#, K(w′, z)#] = K(w,w′) = K(w,w′) = K(w′, w) = [K(w′, z), K(w, z)].

Hence the (antilinear) involution F 7→ F# extends by continuity to an antiisometry on P.

The real zeros of the function E are connected with the divisor of the space P(E).

Lemma 5.4. Let E ∈ HBκ. For each x ∈ R we have

OrdxE = d(P)(x).

Proof : We first show that (as a function of z)

∂n

(∂w)n
K(w, z) ∈ P, n = 0, 1, 2, . . . ,



and that

[F (z),
∂n

(∂w)n
K(w, z)|w=w0] = F (n)(w0), F ∈ P, n = 0, 1, 2, . . . . (5.4)

This follows inductively, since

F (w) − F (w0)

w − w0
= [F (z),

K(w, z) −K(w0, z)

w − w0
], F ∈ P.

As every F ∈ P is entire, the left hand side converges to F ′(w0) if w → w0. Hence
K(w,z)−K(w0,z)

w−w0
has a weak limit in P, which is (since weak convergence implies pointwise

convergence) given by

lim
w→w0

K(w, z) −K(w0, z)

w − w0
=

∂

∂w
K(w, z)|w=w0.

Now proceed by induction to obtain the desired formula for higher derivatives.

The relation (5.4) shows that

d(P)(x) = max{n ∈ N0|
∂k

(∂w)k
K(w, z)|w=x ≡ 0, k < n}.

We have

(z − w)
∂n

(∂w)n
K(w, z) − n

∂n−1

(∂w)n−1
K(w, z) = B(z)

∂n

(∂w)n
A(w) − A(z)

∂n

(∂w)n
B(w).

As A and B are linearly independent we have

max{n ∈ N0|
∂k

(∂w)k
K(w, z)|w=x ≡ 0, k < n} =

= max{n ∈ N0|
∂k

(∂w)k
A(w)|w=x =

∂k

(∂w)k
B(w)|w=x = 0, k < n},

and the assertion follows.

Corollary 5.5. Let P be a dB-Pontryagin space, and let d be a given divisor, such that
d(w) = 0 with exception of an isolated subset of R. Then there exists a dB-Pontryagin space

Q with d(Q) = d, which is isometrically isomorphic to P.
Proof : Let P = P(E) as in Theorem 5.3. Let x1, x2, . . . be the real zeros of E taking into

account their multiplicities. Denote by U(z) a Weierstraß product with zeros x1, x2, . . .. Let
y1, y2, . . . be those real points where d(y) 6= 0, each as often as the value d(y), and denote by

V (z) a Weierstraß product with zeros y1, y2, . . ..

Consider the function E1(z) := V (z)
U(z)

E(z). By virtue of (5.2) and

E#
1 (z)

E1(z)
=
E#(z)

E(z)



we find E1 ∈ HBκ. Again by (5.2) we find that

K1(w, z) =
V (w)

U(w)
K(w, z)

V (z)

U(z)
,

hence F (z) 7→ V (z)
U(z)

F (z) is an isometry of P(E) onto P(E1).

Remark 5.6. Note that, if E = A− iB, then

A,B,E ∈ Ass P(E).

This follows from Lemma 4.5 and the fact that K(w, z) ∈ P(E) for all w.

In the case of a dB-Hilbert space P(E) the functions F (z), F ∈ P satisfy certain
growth conditions. A similar result holds for dB-Pontryagin spaces. Recall the notion of

bounded type and mean type as introduced in Section 2.

Proposition 5.7. Let P = P(E), E = A− iB, be a dB-Pontryagin space. The functions
F (z)
A(z)

, F ∈ Ass P, are of bounded type in C+. We have

max
F∈P

mt
F (z)

A(z)
= max

F∈AssP
mt
F (z)

A(z)
= 0.

If there exists a function F0 ∈ Ass P which is of bounded type in C+, then all functions

F ∈ Ass P are in fact of exponential type (compare e.g. [Bo] or [Le]) and

max
F∈P

etF (z) = max
F∈AssP

etF (z) = etA(z).

The same assertion holds with A replaced by B or E.

Proof : Choose a positiv definite inner product on P which turns P into a dB-Hilbert space,
P = P(E0), with E0 ∈ HB0. Then A

E0
is of bounded type in C+ and has nonpositive mean

type.
Assume on the contrary that mt A

E0
= ρ < 0. Then, by Proposition 2.4, also

mt B
E0

= ρ. Hence mtK(w,z)
E0

≤ ρ < 0.

By [dB7] the mapping F (z) 7→ eizρF (z) is an isometry of the linear subspace
span {K(w, z)|w ∈ C} of P(E0) into P(E0). Hence it can be extended to an isometry

of cls {K(w, z)|w ∈ C} = P(E0) into P(E0). This is a contradiction since, by the results of

[dB7]

max
F∈P(E0)

mt
F

E0

= 0, (5.5)

and we conclude that ρ = 0. Now the assertion for A follows from (5.5).
Since −A

B
∈ Nκ, we have mtA

B
= 0, hence the assertion with B instead of A holds.

Clearly mtE
A
≤ 0. The function E#

E
is contained in Sκ. By [KL2] it can be written

as a product of a rational function and a function contained in S0. Hence mtE#

E
≤ 0, and



we find that mtA
E

= mtE+E#

2E
≤ 0. Now the assertion with A replaced by E follows.

6 Selfadjoint extensions of S

Let P be a dB-Pontryagin space. As we have seen in Proposition 4.6 the extensions of S
correspond to the functions S ∈ Ass P. The following result determines those associated

functions S which lead to selfadjoint extensions of S.
As in Theorem 5.3 let P = P(E) with a function E ∈ HBκ, and write E(z) =

A(z) − iB(z) with real entire functions A and B.

Proposition 6.1. Let S ∈ Ass P. The relation A corresponding to S via (4.7) is selfadjoint
if and only if

S(z) = uA(z) + vB(z), u, v ∈ C, uv ∈ R,

or, equivalently,

S(z) = λ(eiαE(z) − e−iαE#(z)), λ ∈ C \ {0}, α ∈ [0, π).

Proof : Note that A being selfadjoint is equivalent to the fact that the relation

[(A− w)−1K(a, z), K(b, z)] − [K(a, z), (A− w)−1K(b, z)] = 0 (6.1)

holds for all a, b ∈ C, w ∈ ρ(A).

Assume first that A is selfadjoint. For a = w ∈ ρ(A) the relation (6.1) can be
written as

−S(w)S(w)(B(b)A(w) − A(b)B(w)) + S(w)S(b)(B(w)A(w) −A(b)B(w))+

+S(w)S(w)(B(b)A(w) −A(b)B(w)) = 0. (6.2)

Choose w ∈ C+ such that B(w)A(w)−A(w)B(w) 6= 0 and S(w) 6= 0. This is possible since

K(w,w) vanishes only on a set which contains no interior points. Then (6.2), considered as
an identity among functions of b, states that S is a linear combination of A and B.

Let S = uA+ vB with u, v ∈ C. Then the left hand side of (6.1) can be written as

K(b, w)K(a, w)

S(w)S(w)
(uv − uv).

Hence A being selfadjoint is equivalent to uv ∈ R.
The fact that the functions of the form uA + vB with uv ∈ R are exactly those

of the form λ(eiαE(z) − e−iαE#(z)) with λ ∈ C and α ∈ [0, π) follows by an elementary
computation.

As a corollary of Proposition 6.1 we obtain a uniqueness result on the function E connected
with a space P via Theorem 5.3.



Corollary 6.2. Let E1, E2 ∈ HBκ. The spaces P(E1) and P(E2) are identical, i.e. contain
the same functions and have the same inner product, if and only if there exist four numbers

u1, v1, u2, v2 ∈ R, such that u1v2 − u2v1 = 1 and

(A1, B1) = (A2, B2)

(
u1 u2

v1 v2

)

. (6.3)

Proof : The spaces P(E1) and P(E2) are identical if and only they have the same kernel
functions: K1(w, z) = K2(w, z). Assume first that E1 and E2 satisfy (6.3) for some choice

of u1, v1, u2, v2. Then
K1(w, z) = (u1v2 − v1u2)K2(w, z). (6.4)

Since u1v2 − v1u2 = 1 by assumption we find that P(E1) and P(E2) are identical.

On the other hand assume that P(E1) and P(E2) are identical. Then both spaces
have the same multiplication operator S, the same associated functions, and allow the same

selfadjoint extensions of S. Since A1 (B1) yields a selfadjoint extension of S in P(E1) and
hence in P(E2), there exist by Proposition 6.1 numbers u1, v1, u2, v2 ∈ C such that (6.3)

holds. Since Ai and Bi (i = 1, 2) are real and linearly independent, in fact u1, v1, u2, v2 ∈ R.
Now (6.4) shows that u1v2 − u2v1 = 1.

Another corollary gives a characterization whether S is densely defined or not. Denote in
the following for α ∈ [0, π) by Sα the function

Sα(z) := −
1

2i
(eiαE(z) − e−iαE#(z)) = − sinαA(z) + cosαB(z).

As we have noted in Proposition 6.1 a function G can be written as G(z) = uA(z) + vB(z)
with u, v ∈ C, uv ∈ R, if and only if G(z) = λSα(z) for some α ∈ [0, π) and λ ∈ C.

Corollary 6.3. We have domS 6= P if and only if there exist u, v ∈ C, not both zero,

such that uv ∈ R and uA(z) + vB(z) ∈ P (or, equivalently, there exists α ∈ [0, π) such that
Sα ∈ P). In this case we have

(domS)⊥ = span {uA+ vB} = span {Sα}.

Proof : The domain of S is not dense in P if and only if S has a canonical selfadjoint
extension which is a proper relation. By Proposition 4.6 and Proposition 6.1 this is the case

if and only if there exist numbers u, v ∈ C, uv ∈ R, such that S := uA + vB ∈ P. Since
the codimension of domS is at most one, and S itself is always in the relational part of the

induced relation A, we find that

(domS)⊥ = span {S(z)}.

The following lemma determines the Q-function (compare [KL1], [LT]) associated to a self-
adjoint extension of S.



Lemma 6.4. Let P = P(E) be given, E = A− iB. Consider the selfadjoint extension Aα

of S induced by Sα (α ∈ [0, π)) via Proposition 6.1. A parametrization of the defect spaces

of S associated with Aα is given by (w ∈ ρ(Aα))

X(w, z) :=
1

Sα(w)
K(w, z), ran (S − w)⊥ = span {X(w, z)}. (6.5)

A Q-function of Aα and S is given by

Qα(z) := −
cosαA(z) + sinαB(z)

− sinαA(z) + cosαB(z)
=
Sα+ π

2
(z)

Sα(z)
. (6.6)

Proof : We consider first the case α = 0, i.e. Sα(z) = B(z). Define X(w, z) by (6.5), then
a straightforward calculation shows that

X(w, z) = (I + (w − w0)(A0 − w)−1)X(w0, z),

i.e. that X(w, z) is an appropriate parametrization of the defect spaces of S. Since

[X(w, z), X(w′, z)] =
1

B(w)
K(w,w′)

1

B(w′)
=

(

−A(w)
B(w)

)

−
(

−A(w′)
B(w′)

)

w − w′
,

the function Q0 is a Q-function associated with A0 and S.
By Corollary 6.2 we may substitute E(z) by eiαE(z) in the assumption of Lemma

6.4. Then K(w, z) remains unchanged, whereas the functions A and B have to be substituted
by cosαA(z) + sinαB(z) = −Sα+ π

2
(z) and − sinαA(z) + cosαB(z) = Sα(z), respectively.

The first part of the proof yields (6.6).

As a corollary of Proposition 6.1 and Lemma 6.4 we have:

Corollary 6.5. Let κ := Ind−P(E) and α ∈ [0, π). Then Qα ∈ Nκ. The point ∞ is a
critical point for Qα for at most one value of α.

Proof : Since the Q-function of an extension A of S can have ∞ as a critical point only if

A is a proper relation, the assertion follows from Corollary 6.3.

7 Orthogonal sets in a space P

Consider a dB-Pontryagin space P = P(E), E = A − iB, with d(P) = 0. As in Lemma
6.4 denote by A0 the selfadjoint extension of S induced by B(z). Moreover, if B ∈ P, let

n be the supremum of all numbers such that znB(z) ∈ P. If B 6∈ P we put for notational
convenience n := −1.

Let {γ1, γ2, . . .} ⊆ R be the set of all real simple zeros of B, α1, . . . , αr ∈ R be the
real multiple zeros and {β1, . . . , βs; β1, . . . , βs} be the set of all nonreal zeros. Note that there



exist only finitely many real multiple or nonreal zeros of B. This follows since Q0 = −A
B
∈ Nκ

and A and B have no common zeros. Hence the zeros of B are exactly the poles of Q0.

Since Q0 is a Q-function of S and A0, this observation leeds to a connection of the
zeros of B and the spectrum of A0 (for the notation used in the following compare [L]). Note

that by Proposition 4.6 the finite spectrum of A0 coincides with {w ∈ C|B(w) = 0} and
that ∞ ∈ σ(A0) if and only if n ≥ 0.

The assertion of the following lemma follows immediately from Proposition 4.6 and

the definitions given in [L].

Lemma 7.1. The set of finite critical points of A0 equals {α1, . . . , αr}. The spectral

subspace of A0 corresponding to

(i) γi, i = 1, 2, . . ., is span {B(z)
z−γi

}.

(ii) αi, i = 1, . . . , r, is

span {
B(z)

z − αi

, . . . ,
B(z)

(z − αi)ri
}, (7.1)

where ri = Ordαi
B.

(iii) {βi, βi}, i = 1, . . . , s, is

span {
B(z)

z − βi

, . . . ,
B(z)

(z − βi)τi
,
B(z)

z − βi

, . . . ,
B(z)

(z − βi)τi

}, (7.2)

where τi = Ordβi
B.

(iv) ∞, is

S∞ = span {B(z), . . . , znB(z)},

in particular n is finite.

The point ∞ is not a critical point for A0 if and only if n = −1 or n = 0, [B,B] > 0 or
n = 0, [B,B] < 0, dim P <∞. It is a singular critical point if and only if [B, znB] = 0.

Remark 7.2. The inner product with B(z)
z−γi

is given by

[

F (z),
B(z)

z − γl

]

=
1

A(γl)
F (γl), F ∈ P(E), l = 1, 2, . . . , (7.3)

The Gram matrices of the spaces (7.1) and (7.2) are of the form

Gαj
=








0 0 · · · c1
0 c2
...

...
c1 c2 · · · crj







, c1 6= 0,



and

Gβj
=


















0 · · · · · · 0 0 0 · · · d1
...

... 0 d2
...

...
...

...

0 · · · · · · 0 d1 d2 · · · dτj

0 0 · · · d1 0 · · · · · · 0

0 d2
...

...
...

...
...

...
d1 d2 · · · dτj

0 · · · · · · 0


















, d1 6= 0.

The numbers ci and di can be computed from the relations

[

F (z),

k∑

i=0

(
k

i

)
A(k−i)(w)

(i+ 1)!

B(z)

(z − w)i+1

]

= F (k)(w), F ∈ P(E), (7.4)

for w = αj, k = 0, . . . , rj − 1 and w = βj , βj, k = 0, . . . , τj − 1.

The relations (7.3) and (7.4) hold since K(γl, z) = B(z)A(γl)
z−γl

, and since if OrdwB = l,
we have (k ≤ l − 1)

∂k

(∂w)k
K(w, z) =

k∑

i=0

(
k

i

)
A(k−1)(w)

(i+ 1)!

B(z)

(z − w)i+1
∈ P(E),

and that (compare Lemma 5.4)

F (k)(w) = [F (z),
∂k

(∂w)k
K(w, z)].

Theorem 7.3. Assume that ∞ is not a critical point of A0. The span of the spaces

span {
B(z)

z − γl

|l = 1, 2, . . .}, (7.5)

(7.1) and (7.2) is not dense in P if and only if

lim
y→+∞

1

y
Im

A(z)

B(z)
6= 0.

In this case the orthogonal complement of the above span equals span {B(z)}, and we have

[B(z), B(z)] = − lim
y→+∞

y( Im
A(z)

B(z)
)−1. (7.6)

The elements K(w, z) are given by

K(w, z) =
∑

l∈N,γl 6=0

σl

B(w)

γl − w

B(z)

γl − z
+ σ0

B(w)

w

B(z)

z
+ µ1B(w)B(z)+



+

rj∑

i=1

i−1∑

k=0

λji

B(w)

(αj − w)1+k

B(z)

(αj − z)i−k
+

+

τj∑

i=1

i−1∑

k=0

(

χji

B(w)

(βj − w)1+k

B(z)

(βj − z)i−k
+ χji

B(w)

(βj − w)1+k

B(z)

(βj − z)i−k

)

, (7.7)

where the series converges in the norm of P.
Proof : The function Q0(z) has only isolated singularities, namely the zeros of B. Moreover,

by assumption, ∞ is not a critical point of Q0. It is proved in [KL2] that in this case Q0

has the representation (compare with the more general integral representation discussed in

Section 2)

Q0(z) =
∑

l∈N,γl 6=0

z

γl(γl − z)
σl −

σ0

z
+ µ0 + µ1z +

r∑

j=1

Rj(
1

αj − z
)+

+
s∑

j=1

(

Tj(
1

βj − z
) + T#

j (
1

βj − z
)

)

, (7.8)

where σl > 0, l ∈ N,
∑

l∈N

σl

γ2
l

< ∞, σ0 ≥ 0, µ0, µ1 ∈ R, Rj are real polynomials with

Rj(0) = 0 and Tj are complex polynomials with Tj(0) = 0. The term σ0

z
occurs if and only

if B(0) = 0.
We compute the Nevanlinna kernel for each single summand of Q0:

∑

l∈N,γl 6=0
z

γl(γl−z)
σl −

∑

l∈N,γl 6=0
w

γl(γl−w)
σl

z − w
=

∑

l∈N,γl 6=0

σl

(γl − z)(γl − w)
,

−σ0

z
+ σ0

w

z − w
= σ0

1

zw
,

µ1z − µ1w

z − w
= µ1.

If Rj(z) =
∑rj

i=1 λjiz
i, we find

Rj(
1

αj−z
) −Rj(

1
αj−w

)

z − w
=

rj∑

i=1

i−1∑

k=0

λji

1

(αj − z)i−k(αj − w)1+k
,

if Tj(z) =
∑τj

i=1 χjiz
i,

(

Tj(
1

βj−z
) + T#

j ( 1
βj−z

)
)

−
(

Tj(
1

βj−w
) + T#

j ( 1
βj−w

)
)

z − w
=

=

τj∑

i=1

i−1∑

k=0

(

χji

1

(βj − z)i−k(βj − w)1+k
+ χji

1

(βj − z)i−k(βj − w)1+k

)

.



On the other hand the Nevanlinna kernel of Q0(z) is given by

Q0(z) −Q0(w)

z − w
=

K(w, z)

B(z)B(w)
,

hence we obtain (7.7).

Since the functions B(z)
γl−z

are an orthogonal sequence, only finitely many of these
elements can be nonpositive. Moreover, in the relation (7.7) there are only finitely many

summands added to the series
∑

l∈N,γl 6=0

σl

B(w)

γl − w

B(z)

γl − z
. (7.9)

Since by assumption ∞ is not a critical point the space S∞ is either {0} or nondegenerated.
Thus it can be proved as in [dB7], that the series (7.9) converges in fact in the norm of

P(E).
We obtain by the Lebesgue dominated convergence theorem that

lim
y→+∞

1

y
Q0(iy) = µ1.

Hence the term B(z) occurs in (7.7) if and only if the above limit is not equal to 0. Clearly
this is the case if and only if B ∈ P(E). Taking the inner product of (7.7) with B(z) yields

(7.6)

Remark 7.4. By considering eiαE(z) instead of E(z), it is seen that the preceeding results
remain valid, if only A(z) and B(z) is substituted by −Sα+ π

2
(z) and Sα(z), respectively.

Since ∞ ∈ σ(Aα) if and only if Sα ∈ P, the condition

lim
y→+∞

1

y
Im

Sα+ π
2
(z)

Sα(z)
= 0

is violated for at most one value α0 ∈ [0, π). For all other values of α, the point ∞ is not

critical for Aα, hence Theorem 7.3 can be applied for all α ∈ [0, π) with possible exception
of one value α0 and this exception can occur only if Sα0 ∈ P. Note that, if P is not finite

dimensional, Sα0 ∈ P and ∞ is not a critical point for
Sα+ π

2
(z)

Sα(z)
, then (by the definition of a

critical point in [L]) [Sα0 , Sα0 ] > 0.
By applying Corollary 5.5 it is seen that analoguous results hold for spaces P with

d(P) 6= 0.

8 Matrix functions of the class MS
κ

We start this section with some considerations concerning a certain kernel associated with
a 2× 2-matrix function. For a matrix M let M∗ be its adjoint, and denote by J the matrix

J :=

(
0 −1
1 0

)

.



Definition 8.1. Let M(z) be a 2×2-matrix valued function whose entries are meromorphic
functions in C and let ρ(M) be its domain of holomorphy. Moreover, let S be a scalar function

meromorphic in C. We write M ∈ MS
κ if

M(z)JM(z)∗ = S(z)JS(z), (8.1)

whenever z, z ∈ ρ(M), and if the kernel

HM(z, w) :=
M(z)JM(w)∗ − S(z)JS(w)

z − w
, z, w ∈ ρ(M)

has κ negative squares.
The reproducing kernel Pontryagin space generated by the kernel HM for a function

M ∈ MS
κ is denoted by K(M). Although we have used the notation K(.) already in Definition

2.1, this will not cause confusion. If the matrix M(z) is given by

M(z) =

(
A(z) B(z)
C(z) D(z)

)

,

the kernel HM(w, z) can be written as

HM(w, z) =





B(z)A(w)−A(z)B(w)
z−w

B(z)C(w)−A(z)D(w)+S(z)S(w)
z−w

D(z)A(w)−C(z)B(w)−S(z)S(w)
z−w

D(z)C(w)−C(z)D(w)
z−w



 (8.2)

Lemma 8.2. Let T (z) be a meromorphic function. The matrix M(z) is an element of MS
κ

if and only if T (z) ·M(z) ∈ MST
κ . In fact the mapping

(
F+

F−

)

7→ T

(
F+

F−

)

is an isometry

of K(M) onto K(TM), the respective kernels satisfy

HTM(w, z) = T (z)HM(w, z)T (w). (8.3)

If the entries of M are real, then (8.1) is equivalent to detM(z) = S(z)S#(z).

Proof : The relation (8.3) is obvious. The fact that

(
F+

F−

)

7→ T

(
F+

F−

)

is an isometry

of K(M) onto K(TM) follows from (8.3).

To prove the second assertion, consider the function (z − w)HM(w, z) given by
(8.2). If the entries of M are real, the entries in the left upper and right lower corner of

(z − w)HM(w, z) vanish for w = z. The entry in the left lower corner equals

D(z)A(z) − C(z)B(z) − S(z)S#(z).

Since the right upper entry is given by a similar formula, we find that the condition

M(z)JM(z)∗ − S(z)JS(z) = 0



is equivalent to detM(z) = S(z)S#(z).

In the following we denote by RS(w) the difference quotient (compare with the notation of

Proposition 4.6)

RS(w)X =
X(z) − S(z)

S(w)
X(w)

z − w
.

Here X is allowed to be a scalar- or vector- valued function. From Lemma 8.2 above,

Theorem 5.3 and Corollary 6.7 of [KW] we obtain:

Proposition 8.3. If M ∈ MS
κ , then K(M) is invariant under RS(w). For a, b ∈ C and

elements

(
F+

F−

)

,

(
G+

G−

)

∈ K(M), we have

1

S(a)S(b)

(
G+(b)
G−(b)

)∗

J

(
F+(a)
F−(a)

)

= [

(
F+

F−

)

,RS(b)

(
G+

G−

)

]−

−[RS(a)

(
F+

F−

)

,

(
G+

G−

)

] + (a− b)[RS(a)

(
F+

F−

)

,RS(b)

(
G+

G−

)

]. (8.4)

Corollary 8.4. Assume that M ∈ M1
κ and that

(
u
v

)

∈ K(M), u, v ∈ C. Then uv ∈ R.

If

(
u
v

)

and

(
u1

v1

)

both belong to K(M), they are linearly dependent.

Proof : Choosing in (8.4) the elements

(
F+

F−

)

=

(
G+

G−

)

=

(
u
v

)

we obtain uv−uv = 0.

The remaining assertion follows by an elementary consideration.

Let M ∈ MS
κ be given. In order to study the structure of the reproducing kernel Pontryagin

space K(M), we introduce the component spaces

K+(M) := cls {HM(w, z)

(
1
0

)

}, K−(M) := cls {HM(w, z)

(
0
1

)

}.

Obviously K+(M) + K−(M) = K(M). Denote in the following by π+ and π− the mappings

π+ :

(
F+

F−

)

7→ F+, π− :

(
F+

F−

)

7→ F−.

We also consider the scalar kernel functions

H+
M(w, z) := (1, 0)HM(w, z)

(
1
0

)

, H−
M(w, z) := (0, 1)HM(w, z)

(
0
1

)

,

and the respective reproducing kernel Pontryagin spaces K(H+
M) and K(H−

M). Clearly

Ind−K(H+
M) ≤ Ind−K(M), and Ind−K(H−

M) ≤ Ind−K(M).



Remark 8.5. Assume that the matrix function M(z) ∈ MS
κ has real and entire entries

A,B,C,D. If the functions A and B (C and D) are linearly independent and have no

common nonreal zeros, then A− iB ∈ HBκ′ (D + iC ∈ HBκ′′) for some κ′ ≤ κ (κ′′ ≤ κ). In
this case we have K(H+

M) = P(A− iB) (K(H−
M) = P(D + iC)).

Lemma 8.6. We have

K+(M)⊥ = ker π+,

dim (π+K(M)/π+K+(M)) = Ind0K+(M).

Moreover,
K+(M)/K+(M)◦ ∼= K(H+

M),

and if Ind0K+(M) = 0 we have K(H+
M) = π+K(M) as a set of functions, in fact π+ is a

partial isometry. If K+(M) = K(M), the mapping π+ is an isometry of K(M) onto K(H+
M).

These assertions remain true if everywhere + is replaced by −.

Proof : The relation K+(M)⊥ = ker π+ holds by definition. Decompose K(M) as

K(M) = (K+(M)+̇H1)[+̇]H2,

where H1 is skewly linked to K+(M)◦, then H2 ⊆ ker π+ and H1 ∩ ker π+ = {0}. Hence the
codimension of π+K+(M) in π+K(M) equals dim H1 = Ind0K+(M).

The mapping π+ maps HM(w, z)

(
1
0

)

onto H+
M(w, z), hence extends to an isom-

etry of K+(M)/K+(M)◦ onto K(H+
M).

Corollary 8.7. Let L ⊆ K(M) be a Pontryagin space. If L ⊥ ker π+, then π+|L is an
isometry of L into K(H+

M).

Corollary 8.8. Assume that Ind0K+(M) = 0. Then K(H+
M) is invariant under application

of RS(w). If even K+(M) = K(M), then the mapping ψ := π−(π+)−1 satisfies

F (a)(ψG)(b) − (ψF )(a)G(b)

S(a)S(b)
= [F,RS(b)G] − [RS(a)F,G]+

+(a− b)[RS(a)F,RS(b)G], (8.5)

for F,G ∈ K(H+
M) and a, b ∈ C such that S(a), S(b) 6= 0. Any mapping ψ′ which assigns to

each function F ∈ K(H+
M) an entire function and which satisfies (8.5) is of the form

ψ′ = ψ + λ, λ ∈ R.

Proof : Note first that Ind0K+(M) = 0 implies by Lemma 8.6 that π+K+(M) = K(H+
M).

Since RS(w) commutes with π+, it follows from π+K(M) = K(H+
M) and Proposition 8.3 that

K(H+
M) is invariant under RS(w).



If K+(M) = K(M), the mapping (π+)−1 is an isometry of K(H+
M) onto K(M). The

relation (8.5) follows from (8.4).

Assume that ψ′ is given. By (8.5) we have for any F,G ∈ K(H+
M) and a, b ∈ C

F (a)((ψ − ψ′)G)(b) = G(b)((ψ − ψ′)F )(a).

By a convenient choice of G and b the assertion follows.

If a matrix function M ∈ M1
κ is given,

M(z) =:

(
m11(z) m12(z)
m21(z) m22(z)

)

,

and the entry m21(z) does not vanish identically, then we will consider the so called Potapov-

Ginzburg transform:

Ψ(M)(z) :=

(
m11(z)
m21(z)

m11(z)m22(z)−m21(z)m12(z)
m21(z)

1
m21(z)

m22(z)
m21(z)

)

, z ∈ ρ(Ψ(M)(z)).

Let us recall the following result from [Br] (compare also [KL3], [KW]).

Lemma 8.9. Let M(z) be a 2 × 2-matrix function. Then M ∈ M1
κ if and only if

Ψ(M)(z) ∈ N 2×2
κ . In fact the kernel relation

HM(w, z) =

(
−1 m11(z)
0 m21(z)

)
Ψ(z) − Ψ(w)∗

z − w̄

(
−1 m11(w)
0 m21(w)

)∗

(8.6)

holds. The mapping (
F+

F−

)

7→

(
−1 m11(z)
0 m21(z)

)(
F+

F−

)

is an isometry of K(Ψ(M)) onto K(M). Under application of this isometry the subspace
ker π− of K(Ψ(M)) is mapped bijectively onto the subspace ker π− of K(M).

Remark 8.10. Note that by Lemma 8.2 similar results hold for matrices of the class MS
κ .

For the sake of simplicity we will consider only matrices of the class M1
κ. However, we could

avoid the use of Lemma 8.2 if we define for M ∈ MS
κ a Potapov-Ginzburg transform by

ΨS(M)(z) :=

( m11(z)
m21(z)

1
S(z)

(m11(z)m22(z)
m21(z)

−m12(z))

S(z)
m21(z)

m22(z)
m21(z)

)

.

The kernel relation corresponding to (8.6) then is

HM(w, z) =

(
−S(z) m11(z)

0 m21(z)

)
Ψ(z) − Ψ(w)∗

z − w̄

(
−S(w) m11(w)

0 m21(w)

)∗

.



9 The structure of the reproducing kernel space K(M)

In this section we investigate the structure of the space K(M) for functions M ∈ M1
κ which

satisfy an additional condition: if M is given by

M(z) =

(
m11 m12

m21 m22

)

∈ M1
κ,

we assume throughout this section that M(z) is meromorphic in C, that

m21(z), m22(z) 6≡ 0, min(Ordwm21,Ordwm22) ≤ 0, w ∈ C, (9.1)

and that

min(Ordwm11,Ordwm12) ≥ min(Ordwm21,Ordwm22), w ∈ C, (9.2)

holds.

Remark 9.1. If M is real and entire, m21 and m22 are linearly independent and have no

common zeros (i.e. satisfy (9.1)), then m22 + im21 ∈ HBκ′ (κ′ ≤ κ) and satisfies (9.2). The
space K(H−

M) is a dB-Pontryagin space, K(H−
M) = P(m22 + im21).

Note that, if S is any meromorphic function, the condition (9.2) holds for a matrix
M if and only if it holds for S ·M . Hence, by Lemma 8.2, the restriction to functions of the

class M1
κ instead of MS

κ is in some respects not essential.
The following results show that the above conditions on M reflect in a very special

structure of the Potapov-Ginzburg transform Ψ(M).

Lemma 9.2. Let M(z) ∈ M1
κ be meromorphic in C and satisfy (9.1) and (9.2). Then the

Potapov-Ginzburg transform

Ψ(M)(z) =:

(
n11(z) n12(z)
n21(z) n22(z)

)

satisfies

ρ(Ψ(M)) = ρ(n22) (9.3)

and

Ordwn11,Ordwn12,Ordwn21,Ordwdet Ψ(M) ≥ Ordwn22, w 6∈ ρ(Ψ(M)). (9.4)

Proof : In the following fix w 6∈ ρ(Ψ(M)). Assume that w 6∈ ρ(n11), i.e. that Ordwm11 <

Ordwm21. With (9.2) we find

Ordwm11 ≥ min(Ordwm21,Ordwm22) = Ordwm22,

hence Ordwn11 ≥ Ordwn22, in particular w 6∈ ρ(n22).

Assume that w 6∈ ρ(n21), i.e. that Ordwm21 > 0. By (9.1) we have Ordwm22 ≤ 0,
hence

Ordwn22 = Ordwm22 − Ordwm21 ≤ −Ordwm21 = Ordwn21,



and again w 6∈ ρ(n22). Note that, since M satisfies (8.1), we have Ψ(M)(z)∗ = Ψ(M)(z).
Hence the assumption concerning n12 follows by symmetry.

For a pole w of n22 we have min(Ordwm21,Ordwm22) = Ordwm22. By (9.2),
Ordwm12 ≥ Ordwm22, and since det Ψ(M) = m12

m21
, we find

Ordwdet Ψ(M) ≥ Ordwn22.

In the sequel we investigate the structure of a meromorphic function

Q(z) =

(
n11(z) n12(z)
n21(z) n22(z)

)

∈ N 2×2
κ ,

which satisfies (9.3) and (9.4) (with detQ instead of det Ψ(M)). These considerations will
in turn be applied to the Potapov-Ginzburg transform of a matrix M which satisfies (9.1)

and (9.2).
It is well known (compare e.g. [KL1] or [HSW]) that there exists a model for Q,

i.e. a Pontryagin space P, a selfadjoint relation A with ρ(A) 6= ∅, and linear mappings
Γz : C2 → P, z ∈ ρ(A) with

Γz = (I + (z − w)(A− z)−1)Γw, z, w ∈ ρ(A), (9.5)

such that ρ(Q) = ρ(A) and

Q(z) = C − i Im z0Γ
∗
z0

Γz0 + (z − z0)Γ
∗
z0

Γz (9.6)

with a constant selfadjoint 2 × 2-matrix C. Moreover, the space P can be chosen such that

cls
⋃

z∈ρ(A)

ΓzC
2 = P. (9.7)

As a short argument shows this condition implies that A has eigenvalues (including ∞) of
geometric multiplicity at most two. We will show that the properties (9.3) and (9.4) of Q

ensure that the geometric multiplicity of the eigenvalues of A is in fact one.
Since Q is meromorphic, σ(A) ∩ C consists of isolated points only:

σ(A) ∩ C = {λj|j = 1, 2, . . .} ∪ {βk, βk|k = 1, . . . , m},

where λj ∈ R, j = 1, 2, . . ., and βk ∈ C+, k = 1, . . . , m. There exist selfadjoint projectors
E{λj} and E{βk;βk}

commuting with A such that (compare [DS2])

σ(A∩ (E{λj}P)2) = {λj}, λj ∈ ρ(A ∩ (((I − E{λj})P)2))

for j = 1, 2, . . ., and

σ(A∩ (E{βk;βk}
P)2) = {βk, βk}, βk, βk ∈ ρ(A ∩ (((I −E{βk ;βk}

)P)2))



for k = 1, . . . , m. In fact, E{λj} is the Riesz projection of P onto the generalized eigenspace of
A at λj , and E{βk;βk}

is the Riesz projection of P onto the span of the generalized eigenspaces

of βk and βk. As P is a Pontryagin space and satisfies (9.7), all these generalized eigenspaces

are finite dimensional.
If E := E{λj} or E := E{βk ;βk}

and we put Γ1
z := (I −E)Γz and Γ2

z := EΓz, then Γ1
z

and Γ2
z satisfy (9.5) and the function Q can be written as

Q(z) = Q1(z) +Q2(z), (9.8)

with

Q1(z) := D + C − i Im z0(Γ
1
z0

)∗Γ1
z0

+ (z − z0)(Γ
1
z0

)∗Γ1
z,

Q2(z) := (1 −D) − i Im z0(Γ
2
z0

)∗Γ2
z0

+ (z − z0)(Γ
2
z0

)∗Γ2
z,

and an arbitrary constant selfadjoint 2×2-matrix D. Then Q1(z) is analytic at λj or βk, βk,

respectively, and Q2(z) has only one pole at λj (a pair of poles at βk, βk, respectively).

Moreover, since EP is finite dimensional, it follows from [KL2] that we can choose D such
that Q2(z) = Γ∗(A − z)−1Γ for a linear mapping Γ : C2 → EP with Γ2

z = (A − z)−1Γ,

z ∈ ρ(A). Note that

cls
⋃

z∈O

(A− z)−1ΓC2 = EP

for any open set O contained in ρ(A).

Lemma 9.3. Let Q 6= {0} be a finite dimensional Pontryagin space, let L be a selfadjoint

operator in Q with σ(L) = {λ}, λ ∈ R, and assume that the geometric multiplicity of λ is
at most two. Moreover, let Γ : C2 → Q be a linear mapping such that

span
⋃

z∈O

(L − z)−1ΓC2 = Q (9.9)

for some open set O ⊆ ρ(L). Let

Γ∗(L − z)−1Γ =:

(
n11(z) n12(z)
n21(z) n22(z)

)

,

and assume that (9.3) and (9.4) hold. Then dim Q = −Ordλn22,

span {(L − z)−1Γ

(
0
1

)

|z ∈ O} = Q, (9.10)

and the geometric multiplicity of λ is one.
Proof : Without loss of generality we assume that λ = 0.

We set x0 := Γ

(
0
1

)

, xj := Ljx0, y0 := Γ

(
1
0

)

, yj := Ljy0. Note that (9.9) is

equivalent to

span {x0, x1, . . . , y0, y1, . . .} = Q, (9.11)

whereas (9.10) means
span {x0, x1, . . .} = Q. (9.12)



Note that x0 6= 0, since by (9.3) and (9.9) we have

0 6∈ ρ(Γ∗(L − z)−1Γ) = ρ(n22).

If y0 = 0 the relation (9.12) holds. Otherwise let l ∈ N (m ∈ N) be such that xl 6= 0

and xl+1 = 0 (ym 6= 0 and ym+1 = 0), and put L = span {x0, . . . , xl}. Note that, {x0, . . . , xl}
is a basis of L, and that the Gram matrix with respect to this basis is a Hankel matrix.

The function n22(z) can be written as

n22(z) = −
∞∑

k=0

[Lkx0, x0]
1

zk+1
,

and similar formulas hold for n12, n21 and n11.

The subspace L is degenerated if and only if [xl, x0] = 0. In this case Ord0n22 >
−(l + 1). By (9.11) and since Q is nondegenerated we must have [xl, y0] 6= 0, hence

Ord0n12(z) ≤ −(l + 1). This contradicts (9.4), and we arrive at the conclusion that L

is nondegenerated. Moreover, we find Ord0n22 = −(l + 1).

Let P be the orthogonal projection of Q onto L. Then LP = PL because L is
invariant under L. Hence

n12 = [(L − z)−1x0,Py0], n21 = [(L− z)−1Py0, x0],

and

n11 = [(L − z)−1Py0,Py0] + [(L − z)−1(I − P)y0, (I − P)y0].

Put (I − P)y0 =: ŷ0. If ŷ0 6= 0, let r be such that Lrŷ0 6= 0 and Lr+1ŷ0 = 0. Then
{ŷ0,Lŷ0, . . . ,Lrŷ0} is a basis of L⊥. Since L⊥ is nondegenerated, we have [Lrŷ0, ŷ0] 6= 0,

hence Ord0[(L − z)−1ŷ0, ŷ0] = −(r + 1) < 0. Therefore

Ord0([(L − z)−1ŷ0, ŷ0]n22) < −(l + 1).

By Lemma 3.3 of [KL3] we have

Ord0([(L − z)−1Py0,Py0]n22 − n12n21) ≥ −(l + 1),

hence Ord0detQ < −(l + 1), which contradicts (9.4).

We conclude that ŷ0 = 0, i.e. that (9.12) holds. In particular, dimQ = l + 1 =
−Ord0n22 and the geometric multiplicity of 0 is one.

Lemma 9.4. Let Q 6= {0} be a finite dimensional Pontryagin space, let L be a selfadjoint

operator in Q with σ(L) = {β, β}, and assume that the geometric multiplicity of β (β) is at
most two. Moreover, let Γ : C2 → Q be a linear mapping such that

span
⋃

z∈O

(L − z)−1ΓC2 = Q (9.13)



for some open set O ⊆ ρ(L). Let

Γ∗(L − z)−1Γ =:

(
n11(z) n12(z)
n21(z) n22(z)

)

,

and assume that (9.3) and (9.4) hold. Then dim Q = −2Ordβn22,

span {(L − z)−1Γ

(
0
1

)

: z ∈ O} = Q,

and the geometric multiplicity of β (β) is one.
Proof : Denote by E the Riesz projection of Q onto the generalized eigenspace at β with

the generalized eigenspace at β as its kernel, and let E ′ := I − E. Note that EQ and E ′Q

are neutral and skewly linked.

Set x0 := EΓ

(
0
1

)

, xj := (L − β)jx0, and let l be such that xl 6= 0 and xl+1 = 0.

If x0 = 0 put formally l = −1. Set x′0 := E ′Γ

(
0
1

)

, x′j := (L − β)jx′0, and let l′ be such

that xl′ 6= 0 and xl′+1 = 0. If x′0 = 0 put l′ = −1. In a similar manner define elements yj, y
′
j

and numbers m,m′.
Again (9.13) implies that

span {x0, . . . , xl, x
′
0, . . . , x

′
l′ , y0, . . . , ym, y

′
0, . . . , y

′
m′} = Q, (9.14)

and we have to show that in fact

span {x0, . . . , xl, x
′
0, . . . , x

′
l′} = Q. (9.15)

If y0 = y′0 = 0, we are done. Otherwise put L := span {x0, . . . , xl, x
′
0, . . . , x

′
l′}, note that

the elements x0, . . . , xl, x
′
0, . . . , x

′
l′ are a basis of L, and that the Gram matrix with respect

to this basis has 2 × 2-block form with zero blocks in the diagonal and Hankel matrices as
off-diagonal blocks. Moreover, note that at least one of x0 and x′0 is not equal to zero as is

seen by the same reasoning as in the proof of Lemma 9.3.
If the subspace L is degenerated, we have [xl, x

′
0] = 0 or [x′l′ , x0] = 0. In the first

case we find Ordβn22(z) > −(l + 1). By (9.14), and since Q is nondegenerated this yields
0 6= [xl, y

′
0], hence Ordβn12(z) ≤ −(l+1) which contradicts (9.4). In the second case the same

argument yields a contradiction, and we conclude that L is nondegenerated. In particular,

−(l + 1) = Ordβn22 = Ordβn22 = −(l′ + 1).

Let P be the orthogonal projection of Q onto L. Then LP = PL because L is invariant

under L, and hence EP = PE. This gives

n12 = [(L− z)−1(x0 + x′0),P(y0 + y′0)], n21 = [(L− z)−1P(y0 + y′0), (x0 + x′0)],

and

n11 = [(L − z)−1P(y0 + y′0),P(y0 + y′0)] + [(L − z)−1(I − P)(y0 + y′0), (I − P)(y0 + y′0)].



Put ŷ0 := (I − P)y0 and ŷ′0 := (I −P)y′0. The elements

ŷ0, (L − β)ŷ0, . . . , (L− β)rŷ0, ŷ
′
0, (L− β)ŷ′0, . . . , (L − β)r′ ŷ′0,

span L⊥. Here r is such that (L−β)r ŷ0 6= 0 and (L−β)r+1ŷ0 = 0. If ŷ0 = 0, we put r = −1.
The number r′ is defined similar.

If we assume that L⊥ 6= {0}, we have, since L⊥ is nondegenerated, r = r′ ≥ 0 and
[(L − β)rŷ0, ŷ

′
0] 6= 0. Hence Ordβ[(L − z)−1(ŷ0 + ŷ′0), ŷ0 + ŷ′0] = −(r + 1) < 0. Therefore

Ordβ([(L − z)−1(ŷ0 + ŷ′0), ŷ0 + ŷ′0)]n22) < −(l + 1).

By Lemma 3.3 of [KL3] we have

Ordβ([(L − z)−1Py0 + Py′0,Py0 + Py′0]n22 − n12n21) ≥ −(l + 1),

hence OrdβdetQ < −(l + 1), which contradicts (9.4).

We conclude that ŷ0 = ŷ′0 = 0, i.e. that (9.15) holds. In particular, dimQ =
2(l + 1) = −2Ordβn22, and the geometric multiplicity of β and β is one.

Proposition 9.5. Let Q ∈ N 2×2
κ satisfy the conditions (9.3) and (9.4). Let P, A and Γz

be a model for Q (as introduced above). Then each finite eigenvalue of A is of geometric
multiplicity one. Moreover, we have

(cls {Γz

(
0
1

)

|z ∈ ρ(A)})⊥ ⊆ S∞,

where S∞ denotes the generalized eigenspace at ∞.

Proof : The first assertion follows from (9.8), Lemma 9.3 and Lemma 9.4. Moreover,

these lemmata together with the fact that cls {Γz

(
0
1

)

|z ∈ ρ(A)} is invariant under Eλj

(E{βk;βk}
), show that for

x ⊥ cls {Γz

(
0
1

)

|z ∈ ρ(A)},

we have E{λj}x = 0 and E{βk;βk}
x = 0. By [L] we obtain x ∈ S∞.

There exists a model for n22, i.e. a Pontryagin space P′, a selfadjoint relation A′, ρ(A′) 6= ∅,
and elements γz ∈ P′, such that

γz = (I + (z − w)(A′ − z)−1)γw, z, w ∈ ρ(A′),

cls {γz|z ∈ ρ(A)} = P′,

and (for some c ∈ R)

n22(z) = c− i Im z0[γz0 , γz0] + (z − z0)[γz, γz0].



Lemma 9.6. Let Q(z) be as in Proposition 9.5. Assume that A′ introduced above is an
operator, i.e. that A′(0) = {0}. Put

L := cls {Γz

(
0
1

)

|z ∈ ρ(A)},

then
L = L◦ + S⊥

∞, L⊥ = (L◦)⊥ ∩ S∞, (9.16)

and

dim L⊥ ≥ Ind0(S∞) + max(Ind−(S∞), Ind+(S∞)). (9.17)

Proof : By the construction of the model for Q the space L is invariant under (A−z)−1, z ∈
ρ(A). Hence also L⊥ and L◦ are invariant under (A−z)−1, z ∈ ρ(A). Proposition 9.5 implies
that L⊥, and hence L◦ is contained in S∞.

An elementary consideration shows that the triplet

(L/L◦, (A ∩ L2)/(L◦)2,Γz

(
0
1

)

/L◦)

is also a model for n22, hence unitarily equivalent to (P′,A′, γz) (compare [HSW]). As A′ is

an operator we have (A′ − z)−kP′ = P′ for all k ∈ N. This means that (A− z)−kL+L◦ = L.
Denote by n the maximal length of a Jordan chain of A at infinity. Then S⊥

∞ =

ran (A− z)−k for k ≥ n. It follows that L = S⊥
∞ + L◦.

Since L◦/S◦
∞ is a neutral subspace of S∞/S

◦
∞, its dimension cannot exceed

min(Ind−S∞, Ind+S∞).

Hence the dimension of its orthogonal companion is at least

dimS∞/S
◦
∞ − min(Ind−S∞, Ind+S∞) = max(Ind−S∞, Ind+S∞).

The relation (9.17) follows.

Corollary 9.7. Let M(z) ∈ M1
κ satisfy (9.1) and (9.2). Then the subspace ker π− of K(M)

is finite dimensional. If F (z) ∈ π+ker π−, then F is a polynomial of degree at most 2κ.

Proof : The reproducing kernel space K(M) remains the same if we replace M(z) by M(z)U ,
with an (iJ)-unitary matrix U (compare [KW]). By an elementary consideration it is seen

that the demand that A′ (for the matrix Q(z) := Ψ(M(z)U) as introduced above) is an
operator, can be achieved by an appropriate choice of U . Hence we may assume without

loss of generality that A′(0) = {0}.
It is well known (compare [ABDS1]) that as a model space P for the function Q we

may choose K(Q) (recall Definition 2.1). Then

(A− w)−1F (z) =
F (z) − F (w)

z − w
, F ∈ K(Q), w ∈ ρ(A),



and
Γw(z) = NQ(z, w), w ∈ ρ(A).

Hence, A(0) contains only constants, and S∞ consists of pairs of the form

(
p(z)
q(z)

)

, where

p(z) and q(z) are polynomials of degree at most n − 1, when n is the maximal length of a

Jordan chain of A at infinity. Note that the length of such chains cannot exceed 2κ+ 1.
By Lemma 9.6 the subspace ker π− of K(Q) is contained in S∞, hence dim ker π− ≤

dimS∞ < ∞ and π+ker π− consists of polynomials of degree at most 2κ. An application of
Lemma 8.9 yields the assertion.

Corollary 9.8. Let M1(z) ∈ M1
κ1

and M2(z) ∈ M1
κ2

satisfy (9.1) and (9.2), and assume

that
(0, 1)M1(z) = (0, 1)M2(z).

Then

M1(z) =

(
1 p(z)
0 1

)

M2(z), (9.18)

with a real polynomial p(z), deg p ≤ 2 max(κ1, κ2) + 1.
If the subspace ker π− of K(M1) and the subspace ker π− of K(M2) are both equal to

{0}, then the polynomial p(z) is a real constant.

Conversely, given M2(z) ∈ M1
κ2

and a real polynomial p(z), deg p = n, then M1(z)
defined by (9.18) is contained in M1

κ1
where κ1 ≤ κ2 + [n+1

2
].

Proof : Let Q1(z) = Ψ(M1)(z) and Q2(z) = Ψ(M2)(z), then (0, 1)Q1(z) = (0, 1)Q2(z).
Since Qi(z)

∗ = Qi(z), i = 1, 2, the functions Q1(z) and Q2(z) differ only in the left upper

corner:

Q1(z) =

(
n11,1(z) n12(z)
n21(z) n22(z)

)

, Q2(z) =

(
n11,2(z) n12(z)
n21(z) n22(z)

)

.

We also have OrdwdetQi ≥ Ordwn22, i = 1, 2, for w 6∈ ρ(n22). Hence Ordw(n11,1 − n11,2) ≥ 0,
i.e. n11,1 − n11,2 is entire. By considering the integral representations of n11,1 and n11,2 as

introduced in Section 2, we find n11,1 = n11,2 + p(z), and the assertion follows.
If the subspace ker π− of K(M1) and the subspace ker π− of K(M2) both are equal

to {0}, then, looking at the equivalent situation in K(Q1) and K(Q2) with a simultanuously
chosen U as indicated at the beginning of the proof of Corollary 9.7, we see by (9.17) that the

selfadjoint relations A1 in K(Q1) and A2 in K(Q2) are both operators. Hence the Q-functions
satisfy

lim
y→∞

1

y
ℑQ1(iy) = 0, lim

y→∞

1

y
ℑQ2(iy) = 0.

This is only possible if p(z) is equal to a real constant.

The converse follows again by considering Q1 and Q2, since a polynomial p(z) is

contained in Nκ with κ ≤ [deg p+1
2

], and since the sum of two Nevanlinna functions is again



a Nevanlinna function.

Remark 9.9. In the assumptions and conclusions of this section the roles played by the
upper and lower row of a matrix M(z) ∈ M1

κ are different. The corresponding results where

the upper and lower row change their roles, can be obtained by considering the matrix
JM(z)J .

10 A characterization of associated functions

In this and the following sections we will use the notation and results of [KW]. Let P = P(E)

be a fixed dB-Pontryagin space.
We identify the set of associated function of a dB-Pontryagin space as the set P− (as

introduced in [KW]. First we have to relate elements of P− to entire functions. If U ∈ P−,
define an entire function U(w) by

U(w) := [U,

(
K(w, z)
wK(w, z)

)

]±. (10.1)

Since S is minimal, Lemma 3.5 of [KW] implies that the correspondence between U ∈ P−

and the entire function U(w) is one-to-one. Note that, if F ∈ P, we have (ιF )(w) = F (w).

Lemma 10.1. Let α ∈ [0, π) be given, and consider the selfadjoint relation Aα. We have
for U ∈ P− and w ∈ ρ(Aα)

(R−
wU)(z) =

U(z) − Sα(z)
Sα(w)

U(w)

z − w
. (10.2)

Here R−
w is the extension of the resolvent (Aα − z)−1 to P− (compare Section 3 of [KW]).

Proof : A straightforward computation using Lemma 6.4 shows that

R+
wK(z, t) =

Sα(z)

Sα(w)

1

w − z

(
K(w, t)
wK(w, t)

)

−
1

w − z

(
K(z, t)
zK(z, t)

)

.

Hence

(R−
wU)(z) = [R−

wU,K(z, t)] = [U,R+
wK(z, t)]± =

U(z) − Sα(z)
Sα(w)

U(w)

z − w
.

Proposition 10.2. If U ∈ P−, the function U(w) defined by (10.1) is associated to P.

Conversely, any associated function can be represented in this way.



Proof : Let U ∈ P− be given, then R−
wU ∈ P and by (10.2) and Lemma 4.5 we find

U ∈ Ass P.

To prove the converse part it suffices by Lemma 4.5 to show that for some z0 ∈ C we
can represent every function of the form (z− z0)F , F ∈ P, as an element of P−: Let F ∈ P

be given. Then there exists an element U ∈ P−, such that R−
z0
U = F . Since, by [KW] the

kernel of R−
z is not trivial and does not depend on z we may assume, for an appropriate

choice of z0, that U(z0) = 0. The assertion now follows from Lemma 10.1.

Proposition 10.3. Let P = P(E), E = A − iB, be a dB-Pontryagin space. We have
U ∈ Ass P if and only if there exist real entire functions C and D, such that

M(z) :=

(
A(z) B(z)
C(z) D(z)

)

∈ MU
κ′

for some κ′ ∈ N ∪ {0}, and Ind0K+(M) = 0.
Proof : If there exists a matrix M with the stated properties, we have U ∈ Ass P by

Corollary 8.8.
Assume now that U ∈ Ass P is given. We have to construct a matrix M(z) with

the asserted properties.
Note that by Lemma 5.4 and Corollary 5.5 we can assume that E has no real zeros,

i.e. that A and B have no common zeros.
By Proposition 10.2, we can consider U as an element of P−. As such there exists

a generalized U -resolvent matrix W (z) of S (compare Theorem 4.9 of [KW]).
Since, by the results of [KW], we have W ∈ M1

κ, κ = Ind−P, Lemma 8.2 implies

that M(z) := U(z)(−J)W (z)J ∈ MU
κ . By the construction of W and Lemma 6.4 we find

that the first row of M(z) equals (A(z), B(z)). Since S is minimal, it follows from [KW]

that K+(M) = K(M), in particular Ind0K+(M) = 0. It remains to show that the entries of
M(z), or equivalently the entries of U(z)W (z), are entire functions.

By [KW] the matrix kernel HW (w, z) can be written as

HW (w, z) =

(
−Q(z)
P(z)

)

(−Q(w)∗,P(w)∗),

with certain functionals P(z) and Q(z). It follows from Lemma 6.4 and the definition of
P(z) that U(z)P(z)F = F (z) for any F ∈ P. In particular U(z)P(z)F is an entire function.

Since the set of regular points of S equals C, we find (using Lemma 5.1 of [KW]), that also
U(z)Q(z)F is entire. Since the matrix W (w) is invertible whenever U(w) 6= 0 and U(w) 6= 0,

we find that U(z)W (z) is entire.

Corollary 10.4. The matrix M constructed in the proof of Proposition 10.3 satisfies
K+(M) = K(M) and κ′ = Ind−P. Moreover, π+K(M) = P isometrically. Also, for the



constructed matrix M we have

min(OrdwC,OrdwD) ≥ min(OrdwA,OrdwB), w ∈ C, (10.3)

i.e. the relation (9.2) holds for JM(z)J . The relation (9.1) holds for the matrix 1
U(z)

JM(z)J .

If we demand the matrix M in Proposition 10.3 to satisfy K+(M) = K(M), then C
(D) are unique up to real multiples of A (B).

Proof : If A and B have no common zeros, the relation (10.3) holds since C and D are
entire. The general case follows by applying Corollary 5.5.

To prove the remaining assertion apply Corollary 9.8.

Remark 10.5. In particular we may apply Proposition 10.3 to the function E(z). An
elementary computation using Lemma 6.4 and Definition 4.8 of [KW] shows that for the

matrix M(z) we can choose

ME(z) :=

(
A(z) B(z)
−B(z) A(z)

)

.

Then the mapping ψ as introduced in Corollary 8.8 is given by

ψ(F )(w) = iF (w).

11 Subspaces of dB-Pontryagin spaces

It is a main object of the theory developed in [dB7] to study the subspaces of a given
dB-Hilbert space.

Definition 11.1. Let 〈P, [., .]〉 be a dB-space. A closed subspace Q ⊆ P is called a

dB-subspace of P, if it is a dB-space.
Note that a closed subspace Q of a dB-space P is a dB-subspace if and only if it

contains F# and z−w
z−w

F (z) whenever F ∈ Q and F ∈ Q, F (w) = 0, respectively.
Unless explicitly stated the symbol Q ⊆ P will mean in this and the remaining

sections that Q ⊆ P as a set of functions, and that [., .]P|Q2 = [., .]Q.
Note that the property of Q being a dB-subspace does not depend on the choice of

an inner product:

Remark 11.2. Let 〈P, (G., .)〉 and 〈P, (G1., .)〉 be dB-spaces on the same set P. A closed

subspace Q is a dB-subspace of 〈P, (G., .)〉 if and only if it is a dB-subspace of 〈P, (G1., .)〉.
From Theorem 3.3 and Remark 11.2 we obtain an ordering theorem for subspaces

of a dB-space.

Proposition 11.3. Let 〈P, [., .]〉 be a dB-space. If Q1 and Q2 are dB-subspaces of P with
d(Q1) = d(Q2), then either Q1 ⊆ Q2 or Q2 ⊆ Q1.



Proof : Choose an inner product on P which turns P into a dB-Hilbert space. Then Q1

and Q2 are dB-subspaces of P with the same divisor. The assertion now follows from [dB7].

Let us recall a result of [dB7] which shows how the subspaces of a given dB-Hilbert space

are related.

Proposition 11.4. Let P0 be a dB-Hilbert space, and let P0 = P(E0) with some E0 ∈ HB0.

Then there exists a number s− ∈ [−∞, 0), and for each t ≤ 0 there exist real entire functions
At, Bt, such that (Et := At − iBt)

(i) Et ∈ HB0 if t > s−, and At and Bt are linearly dependent if t ≤ s−.

(ii) OrdxEt = OrdxE0 for x ∈ R.

(iii) lim
tցs−

Kt(w,w) = 0 for w ∈ C.

(iv) If s− < t1 ≤ t2 ≤ 0, then P(Et1) ⊆ P(Et2) as a set of functions. If t1 < t2, then
P(Et1) 6= P(Et2) as Hilbert spaces.

Moreover, there exists a subset Msing of (s−, 0) which is a union of open intervals, such that
(Mreg := (s−, 0] \Msing)

(v) P(Etr) is contained isometrically in P(E0) if tr ∈ Mreg. Conversely, if Q is a dB-
subspace of P(E0), d(Q) = d(P), then Q = P(Etr) for some tr ∈Mreg.

If ts ∈Msing, then P(Ets) is not contained isometrically in P(E0), and if t+r := min{t ∈
Mreg|t > ts}, then P(Ets) = P(Etr) as a set of functions.

(vi) If tr ∈Mreg is not the left endpoint of an interval contained in Msing, then
⋂

t>tr
t∈Mreg

P(Et) = P(Etr).

Otherwise ⋂

t>tr
t∈Mreg

P(Et) = P(Et+r
)

with t+r := min{t ∈ Mreg|t > tr}, and

dim




(

⋂

t>tr
t∈Mreg

P(Et))/P(Etr)




 = 1.

(vii) If tr ∈Mreg and is not the right endpoint of an interval contained in Msing, then

cls
⋃

t<tr
t∈Mreg

P(Et) = P(Etr).



Otherwise
cls

⋃

t<tr
t∈Mreg

P(Et) = P(Et−r
)

with t−r := max{t ∈ Mreg|t < tr}, and

dim




P(Etr)/(cls

⋃

t>tr
t∈Mreg

P(Et))




 = 1.

By Remark 11.2 and Theorem 3.3 a similar result holds for the dB-subspaces of

an arbitrary dB-space P0. In the following we denote by Pt the dB-subspace of P0 which
equals as a set of functions the space P(Et) introduced in Proposition 11.4, and which is

endowed with the inner product induced by P0. Note that, if ts ∈ Msing and t > ts such
that (ts, t) ⊆Msing, then Pts = Pt as linear spaces.

Some of the spaces Pt may be degenerated, hence there need not exist functions,
say Ẽt, which generate the space Pt in the sense of Theorem 5.3. However, we will show in

the following that this can happen only for finitely many values of t ∈ Mreg.
Clearly the function

t 7→ Ind−Pt, t ∈ I,

is a nondecreasing function taking values in N∪{0}. If t ∈ (s−, 0] and Pt is nondegenerated

then, for each s ∈ (s−, 0], s < t we have

Ind−Ps + Ind0Ps ≤ Ind−Pt.

Corollary 11.5. Let 〈P, [., .]〉 be a dB-space and consider the chain (Pt)t∈(s−,0]. If t, s ∈
(s−, 0], s < t, and Ind−Ps = Ind−Pt, then P◦

s ⊆ P◦
t . The set (s−, 0] is the union of at most

Ind−P + Ind0P intervalls (possibly consisting of only one point), such that Ind−Pt and P◦
t

are constant on each intervall.

Proof : Let L be a maximal negative subspace of Ps. Then dim L = Ind−(Ps) = Ind−(Pt),
hence L is maximal negative in Pt. It follows that the orthogonal complement L⊥ in Pt

is positive semidefinite. Clearly, P◦
s is a neutral subspace of L⊥ and we conclude that

P◦
s ⊆ (L⊥)◦. Therefore P◦

s ⊆ P◦
t .

The remaining assertions follow immediately from the already proved.

The major part of this section is devoted to the proof of the following

Theorem 11.6. Let P0 be a dB-space. The set

M0 := {t ∈Mreg|Ind0Pt 6= 0}

is finite.

Similar as in Section 9 we make use of some results on 2×2-matrix valued Nevanlinna
functions and of the Potapov-Ginzburg transformation.



Lemma 11.7. Let

M(z) =

(
m11(z) m12(z)
m21(z) m22(z)

)

∈ M1
0

be an entire matrix function, with real entries and assume that K(M) is at least two
dimensional. Then the Potapov-Ginzburg transformation Ψ(M)(z) exists, is analytic on

C \ σ(Ψ(M)), where σ(Ψ(M)) is an isolated subset of R, and has a representation

Ψ(M)(z) = C + zD +
∑

t∈σ(Ψ(M))

(
1

t− z
−

t

t2 + 1
)Gt. (11.1)

Here C is a real selfadjoint 2 × 2-matrix, D is a real nonnegative 2 × 2-matrix, and Gt is a
nonnegative 2 × 2-matrix of the form

Gt = βt

(
1
bt

)
(

1 bt
)

(11.2)

where 0 < βt ∈ R, bt ∈ R \ {0}, and where bt1 and bt2 have different sign for consecutive t1
and t2.

Proof : First of all note that detM(z) = 1 and that therefore the right upper and the
left lower entry of Ψ(M)(z) coincide. It follows from [dB7] and from the assumption that

dim K(M) ≥ 2, that no entry of M(z) vanish identically, in fact no entry has a nonreal zero.
Hence the Potapov-Ginzburg transformation exists. Since m21 and m22 have no common

zeros and M is entire, M satisfies (9.1) and (9.2).
Clearly σ(Ψ(M)) = {z ∈ C|m21(z) = 0} is an isolated subset of R. Since Ψ(M)(z) ∈

N 2×2
0 , it can be written in the form (11.1) for selfadjoint C, and nonnegative D and Gt, t ∈

σ(Ψ(M)). Hence for t ∈ σ(Ψ(M)) the function Ψ(M)(z) has a pole of order one at t with

the residue −Gt. It follows from Lemma 9.3 that Gt has a nontrivial kernel.
Since m21 and m22 (m11 and m21) have no common zeros, all entries of Ψ(M)(z)

have a pole at t of order one.
Clearly, the entries of Ψ(M)(z) are real functions, hence C,D and Gt, t ∈ σ(Ψ(M))

are real. Thus we can write Gt in the form (11.2) with bt, βt 6= 0.

It remains to show that bt1 and bt2 have different sign for consecutive t1 and t2. As
the lower left entry of Ψ(M)(z) equals 1

m21(z)
, it cannot have zeros on R. Hence the residues

of consecutive poles of 1
m21(z)

must have different sign.

Proposition 11.8. Let M(z) ∈ M1
0 be an entire matrix function, with real entries. Assume

that there exist vectors x1, . . . xn ∈ R2 \ {0} and pairwise different numbers t1, . . . , tn ∈ R,
such that

n∑

j=1

HM(z, tj)xj = 0. (11.3)

Then dim K(M) ≤ 4n.
Proof : If K(M) is of dimension one, there is nothing to proof.



As the space K(M) remains unchanged if we replace M by

M(z)

(
u1 u2

v1 v2

)

with u1, u2, v1, v2 ∈ R, u1v2 − u2v1 = 1, we can assume without loss of generality that no

point t1, . . . , tn is contained in σ(Ψ(M)).
If we put Q := Ψ(M), it follows from Lemma 8.9 that the condition (11.3) is

equivalent to
n∑

j=1

NQ(z, tj)yj = 0

for certain vectors y1, . . . yn ∈ R2 \ {0}.
Applying the resolvent f(z) ∈ K(Ψ(M)) 7→ f(z)−f(τ)

z−τ
for τ ∈ R \ (σ(Ψ(M)) ∪

{t1, . . . , tn}) we get
n∑

j=1

NQ(z, tj)
yj

tj − τ
= NQ(z, τ)

n∑

j=1

yj

tj − τ
. (11.4)

Let λ1, . . . , λm be the real zeros of P (τ) :=
∑n

j=1
yj

tj−τ
. Note that m ≤ n− 1.

Now let τ ∈ R tend to some t ∈ σ(Ψ(M)) \ {λ1, . . . , λm}. Then the left hand side
of (11.4) has a finite limit. But the norm of the right hand side is by Lemma 11.7 greater or

equal than

βt

1

(t− τ)2
P (τ)∗

(
1
bt

)
(

1 bt
)
P (τ).

Hence 0 6= P (t)⊥

(
1
bt

)

. Since bt 6= 0, neither the first component p1(τ) nor the second

component p2(τ) of P (τ) vanishes at t.
Hence the real polynomial in τ

p(z) := p1(τ)p2(τ)
∏

j=1,...,n

(tj − τ)2

is nonzero for τ ∈ σ(Ψ(M)) \ {λ1, . . . , λm}. Moreover, for elements τ1, τ2 ∈ σ(Ψ(M)) \
{λ1, . . . , λm} which are consecutive in σ(Ψ(M)), the values p(τ1) and p(τ2) have different
sign. Since the above polynomial has degree at most 2n − 2, an elementary consideration

shows that |σ(Ψ(M))| ≤ 4n− 3.
Since dim K(Ψ(M)) = rank (D)+

∑

t∈σ(Ψ(M)) rank (Gt) we obtain the desired result.

Proposition 11.9. Let 〈P1, [., .]〉 and 〈P2, [., .]〉 be dB-spaces such that d(P1) =
d(P2), P1 ⊆ P2, P◦

1 6= 0, and

Ind−(P1) = Ind−(P2).



If a dB-Hilbert space 〈P2, (., .)1〉 can be constructed (compare Theorem 3.3) with a perturba-
tion of rank n:

(F,G)1 = [F,G] + C
n∑

k=1

F (tk)G(tk), F,G ∈ P2,

for some t1, . . . , tn ∈ R, then codim P2(P1) ≤ 4n.
Proof : Clearly, with 〈P2, (., .)1〉 also 〈P1, (., .)1〉 is a dB-Hilbert space. Denote by K1(z, w),

K2(z, w) the reproducing kernel of 〈P1, (., .)1〉 and 〈P2, (., .)1〉, respectively. Moreover, let P
be the orthogonal projection of 〈P2, (., .)1〉 onto 〈P1, (., .)1〉.

As in the proof of Theorem 3.3 we can write [F,G] = (GjF,G)1, F,G ∈ Pj (j =

1, 2), where

Gj = I − C

n∑

k=1

(., Kj(tk, z))1Kj(tk, z),

hence P◦
j = ker Gj , and any function F ∈ P◦

1 ⊆ P◦
2 is of the form

F =
n∑

k=1

αkK2(tk, z).

Since P◦
1 is invariant under F 7→ F#, we may assume that αk ∈ R, k = 1, . . . n. Since

F ∈ P◦
1, and since PK2(z, w) = K1(z, w), we obtain

F =
n∑

k=1

αkK1(tk, z).

By d(P1) = d(P2) it follows from [dB7] that there exists an entire matrix function
M(z) ∈ M1

0 on C with real entries such that

(A2(z), B2(z)) = (A1(z), B1(z))M(z).

We calculate (compare (12.3))

(

n∑

k=1

αkK2(tk, z),

n∑

k=1

αkK2(tk, z))1 = (

n∑

k=1

αkK1(tk, z),

n∑

k=1

αkK1(tk, z))1+

+

n∑

k,l=1

(αkA1(tk), αkB1(tk))
M(tl)JM(tk)

∗ − J

tl − tk

(
αlA1(tl)
αlB1(tl)

)

.

Since the first and the second term in this equation both are equal to the norm of F , the last
term vanishes. Then, by Proposition 11.8, the dimension of K(M) is at most 4n dimensional.

Since 〈P2, (., .)1〉 ⊖ 〈P1, (., .)1〉 is isomorphic to K(M), we are finished.

Proof : (of Theorem 11.6) Assume on the contrary that |M0| = ∞. Then there exists

some κ ≥ 0, such that
M0,κ := {t ∈M0|Ind−Pt = κ}



is infinite. By Corollary 11.5 we may apply Proposition 11.9 to any two indices t1, t2 ∈
M0,κ. However, since M0,κ is infinite, there exist indices t1, t2, such that the codimension

of Pt1 within Pt2 exceeds the uniform bound given in Proposition 11.9, and we arrive at a
contradiction.

In the remaining part of this section we show that a point t0 where the function Ind−P(Et)
jumps is either the endpoint of an intervall contained in Msing or P(Et0)

◦ 6= {0}.

Lemma 11.10. Let Pn, n ∈ N, be a sequence of Pontryagin spaces, such that Pn ⊇ Pn+1

and
⋂

n∈N
Pn = {0}. Then Pn is a Hilbert space for some (and hence for all larger) n.

Proof : Let ‖.‖ be a positive definite norm on 〈P1, [., .]〉 induced by a fundamental symmetry.
Since Pn is nondegenerated, it is a closed subspace of P1 with respect to the weak topology.

Recall that, since Ind−Pn < ∞, the set {x ∈ Pn|[x, x] ≤ 0} is weakly closed. Consider the

decreasing sequence of compact sets

Mn := {x ∈ Pn|[x, x] ≤ 0, ‖x‖ = 1}.

By our assumptions
⋂

n∈N
Mn = ∅, hence there exists some n such that Mn = ∅, and the

assertion follows.

Proposition 11.11. Let P0 = P(E0) be a dB-Pontryagin space and consider the chain

(Pt)t∈(s−,0] of subspaces with d(Pt) = d(P0). If Pt0 is nondegenerated, there exists a number
ε > 0, such that Ind−Pt is constant on (t0 − ε, t0 + ε) ∩Mreg.

Proof : We first consider t < t0. If t0 is the right endpoint of an intervall contained in Msing,
there is nothing to prove. Otherwise we have

Pt0 = cls
⋃

t<tr
t∈Mreg

Pt.

Then there exists a maximal negative subspace which is contained in
⋃

t<tr
t∈Mreg

Pt, hence

Ind−Pt = Ind−Pt0 if t < t0 and t0 − t is sufficiently small.

Now consider t > t0. If t0 is the left endpoint of an intervall contained in Msing, we
are done. If this is not the case, we have

Pt0 =
⋂

t>tr
t∈Mreg

Pt.

Applying Lemma 11.10 to Pt ⊖ Pt0 , we find that Ind−Pt = Ind−Pt0 if t > t0 and t − t0 is

sufficiently small.



12 Transfer matrices of subspaces

The aim of this section is to show that the dB-subspaces of a given dB-Pontryagin space are

connected with entire matrix functions of the class M1
κ. First note that Lemma 4.5 implies

the following

Lemma 12.1. Let Q and P be dB-Pontryagin spaces. Then Q ⊆ P as a set of functions,
if and only if Ass Q ⊆ Ass P

The remaining part of this section is devoted to the proof of the following result:

Theorem 12.2. Let Pa = P(Ea) and Pb = P(Eb) be dB-Pontryagin spaces, d(Pa) =

d(Pb), let κa = Ind−Pa, κb = Ind−Pb, and write Ea = Aa − iBa, Eb = Ab − iBb. Then
Pa ⊆ Pb isometrically if and only if there exists a matrix function

M(z) =

(
m11(z) m12(z)
m21(z) m22(z)

)

∈ M1
κb−κa

,

with the following properties:

(i) M(z) is an entire function.

(ii) (Ab, Bb) = (Aa, Ba)M .

(iii) There exists no constant

(
u
v

)

∈ K(M), such that uAa + vBa ∈ Pa.

If Pa ⊆ Pb isometrically, then the matrix M ∈ M1
κb−κa

is uniquely determined by the

properties (i) and (ii).

Corollary 12.3. In the situation of Theorem 12.2, the mapping

(
F+

F−

)

7→ F+Aa + F−Ba,

(
F+

F−

)

∈ K(M),

is an isometry of K(M) onto Pb ⊖ Pa.
Before be can give the proof of Theorem 12.2, we need some lemmata.

Lemma 12.4. Let Q ⊆ P, d(Q) = d(P) be dB-Pontryagin spaces. If S is the operator of

multiplication by the independent variable in the space P, then

Q 6⊆ ran (S − w), w ∈ C.

Proof : Assume on the contrary that Q ⊆ ran (S −w). Then, by Proposition 4.2, OrdwF >
d(P) for all F ∈ Q. This contradicts d(P) = d(Q) by Lemma 4.1.



Lemma 12.5. Let P = P(E), E = A− iB, be a dB-Pontryagin space, and denote by ME

the matrix

ME(z) :=

(
A(z) B(z)
−B(z) A(z)

)

.

The space K(ME) consists of the pairs

(
F
iF

)

for F ∈ P. If M ∈ M1
κ, then

{

(
F+

F−

)

∈ K(M)|ME(z)

(
F+(z)
F−(z)

)

∈ K(ME)} = {0}.

The space

L+ := {

(
F+

F−

)

∈ K(M)|π+ME(z)

(
F+(z)
F−(z)

)

∈ K(H+
ME

)}

has finite dimension. In fact, the space L+ is algebraically isomorphic to ker π+. If L+ 6= {0},
it contains a constant.
Proof : The first assertion follows from (8.2), compare also Remark 10.5. Now let M ∈ M1

κ

be given and consider the linear space

L := {

(
F+

F−

)

∈ K(M)|ME(z)

(
F+(z)
F−(z)

)

∈ K(ME)},

endowed with the inner product

[

(
F+

F−

)

,

(
G+

G−

)

] := [

(
F+

F−

)

,

(
G+

G−

)

]K(M)+

+[ME

(
F+

F−

)

,ME

(
G+

G−

)

]K(ME).

Then L can be identified with a closed subspace of K(M)×K(ME). The maximal dimension
of nonpositive subspace of L cannot exceed Ind−K(M)+ Ind−K(ME). Hence the space L/L◦

is a Pontryagin space.

We first show that L does not contain a constant function: Assume that

(
u
v

)

∈ L,

then (
u
v

)

∈ K(M), ME(z)

(
u
v

)

=

(
uA(z) + vB(z)
−uB(z) + vA(z)

)

∈ K(ME).

By Corollary 8.4 we have uv ∈ R. Since the elements

(
F+

F−

)

of K(ME) satisfy F− = iF+,

we find

i(uA(z) + vB(z)) = −uB(z) + vA(z),

i.e. iu = v and iv = −u. Hence u = v = 0.
The next step is to prove that L is invariant under the difference quotient operator

R1, and that R1 satisfies

[R1(a)

(
F+

F−

)

,

(
G+

G−

)

] − [

(
F+

F−

)

,R1(b)

(
G+

G−

)

]+



+(a− b)[R1(a)

(
F+

F−

)

,R1(b)

(
F+

F−

)

] = 0, (12.1)

for

(
F+

F−

)

,

(
G+

G−

)

∈ L and a, b,∈ C.

Let

(
F+

F−

)

∈ L. By Proposition 8.3, we have R1(w)

(
F+

F−

)

∈ K(M) and

RE(w)ME

(
F+

F−

)

∈ K(ME). Since ME satisfies (8.1) we obtain for w ∈ C with E(w) 6= 0

MER1(w)

(
F+

F−

)

= RE(w)ME

(
F+

F−

)

−

−HME
(w, z)(JME(w)∗)−1

(
F+(w)
F−(w)

)

∈ K(ME), (12.2)

hence R1(w)

(
F+

F−

)

∈ L if E(w) 6= 0. Consider a number w0 such that E(w0) = 0. Then

R1(w) has a Laurent expansion at w0. If a coefficient of some negative power of (w − w0)

does not vanish, we can choose F+, F− and z ∈ C such that the function

R1(w)

(
F+

F−

)

(z) =

(
F+(z)
F−(z)

)

−

(
F+(w)
F−(w)

)

z − w

has a singularity at w0. This contradicts the fact that F+ and F− are entire. Hence R1(w)

is analytic at w0, and the relation R1(w0)

(
F+

F−

)

∈ L follows.

To prove (12.1) it is sufficient to consider the case a = b. Then a computation using

(8.1), (8.4) and (12.2) shows that (12.1) holds.
The isotropic part of L is finite dimensional. Assume that L◦ 6= {0}, then one easily

shows that L◦ is a nontrivial finite dimensional invariant subspace of R1(w). Hence there
exists an eigenvector:

R1(w)

(
F+

F−

)

= λ

(
F+

F−

)

.

Since F+ and F− are entire, an elementary consideration shows that λ = 0. Hence

(
F+

F−

)

is constant. This contradicts the above proved fact that L does not contain any nonzero
constant.

The previous consideration shows that L◦ = {0}. Since for each w ∈ C the mappings
(
F+

F−

)

7→ F+(w),

(
F+

F−

)

7→ F−(w),

are continuous on L, there exists a matrix L(w, z) of entire functions, such that

F+(w) = [

(
F+

F−

)

, L(w, z)

(
1
0

)

], F−(w) = [

(
F+

F−

)

, L(w, z)

(
0
1

)

].



By (12.1) we have for a, b ∈ C, a 6= b,

L(a, z) − L(a, b)

z − b
=
L(a, z) − L(b, z)

a− b
.

Hence L(w, z) can be represented as

L(w, z) =
Q(z) −Q(w)∗

z − w
,

with the entire matrix function Q(z) := zL(0, z) ∈ N 2×2
κ . For x ∈ R we have ImQ(x) =

0, and Corollary 2.3 implies that Q(z) is a polynomial of degree at most 2(Ind−K(M) +
Ind−K(ME)) + 1. From this we find that L is finite dimensional. Unless L = {0}, the same

consideration as in the previous step of the proof yields a contradiction.
In the next step consider the space

K(MEa
) ⊕ {MEa

(
F+

F−

)

|

(
F+

F−

)

∈ K(M)},

where the inner product in the second summand is given by

[MEa

(
F+

F−

)

,MEa

(
G+

G−

)

] := [

(
F+

F−

)

,

(
G+

G−

)

]K(M).

The relation

Mb(z)JMb(w)∗ −Ea(z)JEa(w)

z − w
=
MEa

(z)JMEa
(w)∗ −Ea(z)JEa(w)

z − w
+

+MEa
(z)

M(z)JM(w)∗ − J

z − w
MEa

(w)∗ (12.3)

implies that this space is the space K(Mb), where Mb := MEa
M (compare with the concept

of complemention of reproducing kernel spaces as in [ADSR1]). We have

(
F+

F−

)

∈ L+ if

and only if

ME

(
F+

F−

)

−

(
F+A+ F−B
i(F+A+ F−B)

)

=

(
0

(F− − iF+)E

)

∈ K(Mb).

Since (F− − iF+)E 6= 0 by the previous part of the proof, L+ is algebraically isomorphic
to ker π+. Corollary 9.7 implies that dimL+ < ∞. Note in this place that the matrix Mb

satisfies (9.2), in fact with equality. The relation (12.2) shows that L+ is invariant under
R1(w). Hence R1(w) has an eigenvector, which must be a constant.

Proof : (of Theorem 12.2) In the first step of this proof we assume that Pa ⊆ Pb is given.
The function Ea is associated to Pa and hence associated to Pb. Let the matrix Mb ∈ MEa

κb

be as in Proposition 10.3, and assume that it is chosen such that K+(Mb) = K(Mb). The
mapping ψ = π−(π+)−1 assigns to each function F ∈ Pb an entire function, such that (8.5)



holds. In particular, if ψ is restricted to Pa, (8.5) holds. By Corollary 8.8 and Remark 9.9
there exists a number λ ∈ R, such that for F ∈ Pa we have ψF (z) = iF (z) + λF (z). Since

a change of ψ by an additve real multiple of the identity corresponds to a change of Mb by
adding to the second row a real multiple of the first row, we can assume that Mb is chosen

such that ψF (z) = iF (z) for F ∈ Pa. This guarantees that

K(MEa
) ⊆ K(Mb). (12.4)

Let Va ∈ Pa,− be such that, with the identification (10.1), we have Va(z) = Ea(z). By Remark
10.5 we know that 1

Ea
JMEa

J is the generalized Va-resolvent matrix of S ⊆ P2
a as introduced

in Definition 4.8 of [KW]. If Vb ∈ Pb,− is such that Vb(z) = Ea(z), by the construction of Mb

given in the proof of Proposition 10.3, the matrix 1
Ea
JMbJ is the generalized Vb-resolvent

matrix of S ⊆ P2
b With the notation P ′

1 taken from Section 7 of [KW], an elementary

computation using (10.1) and the definition of P ′
1 shows that the relation Vb = P ′

1Va holds.
Moreover, since (12.4) holds, the conventions made in the assumption of Theorem 7.4 of

[KW] are satisfied.
Now we are in the situation to apply Theorem 7.4 of [KW], which shows together

with Lemma 12.4 that the matrix M := M−1
Ea
Mb is entire. Moreover, M ∈ M1

κb−κa
. The

conditions (i) and (ii) are therefore satisfied. The relation (12.3) shows that the mapping
(
F+

F−

)

7→MEa

(
F+

F−

)

is an isometry of K(M) onto K(Mb) ⊖ K(MEa
), in particular the condition (iii) is satisfied.

In the second step of the proof assume that a space Pa = P(Ea) and a matrix M ∈
M1

κb−κa
, which satisfies the listed properties, is given. Consider the matrix Mb := MEa

M .

Together with Lemma 12.5, the assumption (iii) implies that K+(Mb) = K(Mb). Hence,
by the construction of K(Mb) given in Lemma 12.5, we have with (Ab, Bb) := (1, 0)Mb,

Eb := Ab − iBb,
Pa

∼= K(MEa
) ⊆ K(Mb) = K+(Mb) ∼= Pb := P(Eb)

where the inclusion is isometric. The fact that Eb ∈ HBκb
is derived as follows: The

conditions that
E

#
b

Eb
∈ Sκb

, and that Eb and E#
b have no common nonreal zeros are obvious.

Assume that Ab and Bb are linearly dependent. Then

π+HMb
(w, z)

(
1
0

)

= 0.

Hence ker π+ = K(Mb), a contradiction since K(Mb) ⊇ K(MEa
).

In the third step we prove the uniqueness statement of Theorem 12.2. Consider the
following situation: Let Pa ⊆ Pb and M ∈ M1

κb−κa
be given, such that

(Ab, Bb) = (Aa, Ba)M.

Define a matrix M ′
b := MEa

M , and let Mb be as in the first step of the proof. By Lemma

12.5 and (12.3) we have M ′
b ∈ MEa

κb
. By Corollary 9.8 there exists a polynomial s(z), such

that

M ′
b =

(
1 0

−s(z) 1

)

Mb.



The kernel relation

HM ′

b
(w, z) =

(
1 0

−s(z) 1

)

HMb
(w, z)

(

1 s(w)
0 1

)

+

+Ea(z)

(

0 0

0 s(z)−s(w)
z−w

)

Ea(w)

and the fact that ker π+ = {0} in K(Mb) show that K(M ′
b) is the direct and orthogonal sum

of the space

{

(
1 0

−s(z) 1

)(
F+

F−

)

|

(
F+

F−

)

∈ K(Mb)},

endowed with the inner product

[

(
1 0

−s(z) 1

)(
F+

F−

)

,

(
1 0

−s(z) 1

)(
G+

G−

)

] := [

(
F+

F−

)

,

(
G+

G−

)

]K(Mb),

and the space Ea(z)K( s(z)−s(w)
z−w

) with the corresponding inner product. Since

Ind−K(M ′
b) = κb = Ind−K(Mb),

we find Ind−K( s(z)−s(w)
z−w

) = 0.

Choose F ∈ Pa. The definition of M ′
b and the choice of Mb yields together with the

above description of K(M ′
b) that

(
F
iF

)

=

(
1 0

−s(z) 1

)(
F
iF

)

+ Ea(z)

(
0

s1(z)

)

(12.5)

for some polynomial s1(z). Hence

[

(
F
iF

)

,

(
F
iF

)

]K(M ′

b
) = [

(
F
iF

)

,

(
F
iF

)

]K(Mb) + [s1, s1]
K(

s(z)−s(w)
z−w

)
.

Since K(MEa
) is contained isometrically in K(M ′

b) as well as in K(Mb), we find

[s1, s1]
K( s(z)−s(w)

z−w
)
= 0,

hence s1 = 0. Comparing the left and right hand sides of the second row of (12.5), we find

s = 0. Thus M ′
b = Mb, and the matrix M equals the matrix constructed in the first step of

the proof.

In the following we denote for an entire matrix function M(z) by t(M) the trace of M ′(0)J .
It is proved in [dB7] that an entire matrix function M ∈ M1

0, M(0) = 1, satisfies t(M) ≥ 0,

and that t(M) = 0 if and only if M = 1. Together with Proposition 11.3 we obtain:

Corollary 12.6. Let P1 = P(E1), P2 = P(E2) and P = P(E) be dB-Pontryagin spaces.

Assume that d(P1) = d(P2) = d(P), and that P1 ⊆ P, P2 ⊆ P. Denote by M1 and M2 the
transfer matrices

(A,B) = (A1, B1)M1, (A,B) = (A2, B2)M2.



(i) If Ind−P1 < Ind−P2, then P1 ( P2.

(ii) If Ind−P1 = Ind−P2, then P1 ( P2 if and only if t(M1) > t(M2).

13 Factorization of transfer matrices

In this section we give an ordering theorem for transfer matrices of the class M1
κ.

Theorem 13.1. Let Ma ∈ M1
κa

, Mb ∈ M1
κb

and Mc ∈ M1
κc

, κc ≥ κa, κb, be given and
assume that for some Mac ∈ M1

κc−κa
and Mbc ∈ M1

κc−κb
the relations

Mc = MaMac, Mc = MbMbc

hold. Then there exists either a matrix Mab ∈ M1
κb−κa

, with

Mb = MaMab,

or a matrix Mba ∈ M1
κa−κb

, with

Ma = MbMba.

If we additionally assume that Ma(0) = Mb(0) = Mc(0) = 1, which is in fact no loss of

generality, then we can give a condition which case occurs:

(i) If κb > κa or κb = κa, t(Mb) > t(Ma), there exists Mab ∈ M1
κb−κa

, such that Mb =

MaMab.

(ii) If κb = κa and t(Mb) = t(Ma), then Ma = Mb.

(iii) If κb < κa or κb = κa, t(Mb) < t(Ma), there exists Mba ∈ M1
κa−κb

, such that Ma =
MbMba.

Before we can give the proof of Theorem 13.1, we need some more information about
nonisometric inclusions of spaces P(E). We use in the following the theory of reproducing

kernel Pontryagin spaces as given in [ADSR1] (compare also [ADSR2], [ADSR3]). For the
theory of complementation we refer also to [dB8].

In the following let P(E) be a dB-Pontryagin space such that uA+vB ∈ P(E) and

let M ∈ M1
κ be such that

(
u
v

)

∈ K(M). Put Ec = (Ac, Bc), where

(Ac, Bc) = (A,B)M,

and assume that Ind−P(Ec) = Ind−P(E)+κ. In Lemma 12.5 we have introduced the space

L+ = {

(
F+

F−

)

∈ K(M)|π+ME(z)

(
F+(z)
F−(z)

)

∈ P(E)},

and shown that L+ is finite dimensional, invariant under the difference quotient operator
R1(w) and contains only polynomials.



The size of the space L+ mesures how far P(E) is away from being contained
isometrically in P(Ec).

Lemma 13.2. The orthogonal companion in P(E) of the subspace

L1 := {(1, 0)ME

(
F+

F−

)

|

(
F+

F−

)

∈ L+}

is the largest dB-subspace of P(E) which is contained isometrically in P(Ec).

Proof : First we show that L⊥
1 is a dB-space. Since L1 is closed with respect to #, so is

L⊥
1 . Assume that F ⊥ L1, F (w) = 0. We have to show that

F (z)

z − w
= RE(w)F (z) ⊥ L1.

Using the fact that ψ(F )(w) = iF (w) = 0 (compare Remark 10.5), (8.4) and the relation

(12.2), we find for G = (1, 0)ME

(
G+

G−

)

∈ L1

[RE(w)F,G] = [F,RE(w)G] = [F, π+MER1(w)

(
G+

G−

)

]+

+[F, π+HME
(w, z)(JME(w)∗)−1

(
G+(w)
G−(w)

)

] = 0.

If K(w, z) (Kc(w, z)) denotes the reproducing kernel of P(E) (P(Ec)) and H1 is the kernel

H1(w, z) := (1, 0)ME(z)HM (w, z)ME(w)

(
1
0

)

, (13.1)

then the kernel relation
Kc(w, z) = K(w, z) +H1(w, z)

holds. Since L1 = P(E) ∩ K(H1), the remaining assertions follow from [ADSR1].

Now consider the inner product on L+ defined by

[

(
F+

F−

)

,

(
G+

G−

)

]L+ := [

(
F+

F−

)

,

(
G+

G−

)

]K(M)+

+[π+ME

(
F+

F−

)

, π+ME

(
G+

G−

)

]P(E). (13.2)

Lemma 13.3. The difference quotient operator R1(w) satisfies

[R1(w)

(
F+

F−

)

,

(
G+

G−

)

]L+ − [

(
F+

F−

)

,R1(w)

(
G+

G−

)

]L+ = 0



for all

(
F+

F−

)

,

(
G+

G−

)

∈ L+ and w ∈ C.

Proof : If we substitute the definition of the inner product [., .]L+ , we obtain differences of
inner products [., .]K(M) and [., .]P(E). By Proposition 8.3 the difference of the terms [., .]K(M)

gives

−

(
G+(w)
G−(w)

)

J

(
F+(w)
F−(w)

)

.

Hence we have to show that

[π+MER1(w)

(
F+

F−

)

, π+ME

(
G+

G−

)

]P(E)−

−[π+ME

(
F+

F−

)

, π+MER1(w)

(
G+

G−

)

]P(E) =

=

(
G+(w)
G−(w)

)

J

(
F+(w)
F−(w)

)

.

By (12.2) we have

[π+MER1(w)

(
F+

F−

)

, π+ME

(
G+

G−

)

]P(E) =

= [RE(w)(1, 0)ME

(
F+

F−

)

, (1, 0)ME

(
G+

G−

)

]P(E)−

−[K(w, z)(1,−i)(JME(w)∗)−1

(
F+(w)
F−(w)

)

, (1, 0)ME

(
G+

G−

)

],

and a similar expression for the other inner product term [., .]P(E). By Corollary 8.8 we have

[RE(w)(1, 0)ME

(
F+

F−

)

, (1, 0)ME

(
G+

G−

)

]−

−[(1, 0)ME

(
F+

F−

)

,RE(w)(1, 0)ME

(
G+

G−

)

] =

=
i

E(w)E#(w)
((1, 0)ME(w)

(
F+(w)
F−(w)

)

(1, 0)ME(w)

(
G+(w)
G−(w)

)

−

−(1, 0)ME(w)

(
F+(w)
F−(w)

)

i(1, 0)ME(w)

(
G+(w)
G−(w)

)

).

The terms involving K(w, z) (K(w, z)) can be computed by the reproducing kernel property

of K and using the fact that (JME(w)∗)−1 = −JME(w)
E(w)E#(w)

:

−(1,−i)
−JME(w)

E(w)E#(w)

(
F+(w)
F−(w)

)

(1, 0)ME(w)

(
G+(w)
G−(w)

)

+

+(1, 0)ME(w)

(
F+(w)
F−(w)

)

(1,−i)
−JME(w)

E(w)E#(w)

(
G+(w)
G−(w)

)

=



=

(
G+(w)
G−(w)

)∗

ME(w)∗

(
1
0

)

(1,−i)J + J

(
1
i

)

(1, 0)

E(w)E#(w)
ME(w)

(
F+(w)
F−(w)

)

.

All together we obtain

[π+MER1(w)

(
F+

F−

)

, π+ME

(
G+

G−

)

]P(E)−

−[π+ME

(
F+

F−

)

, π+MER1(w)

(
G+

G−

)

]P(E) =

(
G+(w)
G−(w)

)∗

ME(w)∗·

·







(
1
0

)

(i, 0) +

(
i
0

)

(1, 0) +

(
1
0

)

(1,−i)J + J

(
1
i

)

(1, 0)

E(w)E#(w)







︸ ︷︷ ︸

= J

E(w)E#(w)

·

·ME(w)

(
F+(w)
F−(w)

)

=

(
G+(w)
G−(w)

)
ME(w)∗JME(w)

E(w)E#(w)
︸ ︷︷ ︸

=J

(
F+(w)
F−(w)

)

,

which yields the assertion of the Lemma.

Since the element

(
u
v

)

is the only eigenvector of R1(w) in L+, i.e. there is a Jordan chain

of length dim L+ to the eigenvalue 0, we have:

Corollary 13.4. If

(
u
v

)

is not neutral with respect to the inner product (13.2), then

dim L+ = 1.
Proof : Assume that M is an invariant subspace of L+ for R1(w), then M⊥ is invariant un-

der R1(w). If

(
u
v

)

is not neutral, it spans a one dimensional invariant subspace of R1(w),

which is orthocomplemented. By the above argument its orthogonal complement contains

an eigenvector of R1(w). This contradicts the fact that

(
u
v

)

is the only eigenvector of

R1(w) (compare Corollary 8.4), and we conclude that dimL+ = 1.

Proposition 13.5. Let P(E) and P(Ec) be dB-Pontryagin spaces with Ind−P(E) ≤
Ind−P(Ec), and assume that there exists a matrix M ∈ M1

κ, κ = Ind−P(Ec) − Ind−P(E),
such that (Ac, Bc) = (A,B)M . Moreover assume that there exists a nonzero constant
(
u
v

)

∈ K(M), such that uA + vB ∈ P(E). Then P(E) is contained in P(Ec) as a



set of functions, and the inclusion map is contractive but not isometric. The set P(E)
endowed with the inner product induced by P(Ec) is a dB-subspace of P(Ec) (and will be

denoted by P(E)u). The subspace P(E)l := domS of P(E) is a dB-space and is contained
isometrically in P(Ec). At least one of the spaces P(E)u and P(E)l is nondegenerated.

Proof : As in the proof of Lemma 13.2 we decompose the kernel Kc(w, z) as

Kc(w, z) = K(w, z) +H1(w, z),

where H1 is defined as in (13.1). It follows from [ADSR1] that then

Ind−P(Ec) ≤ Ind−P(E) + Ind−K(H1) ≤ Ind−P(E) + Ind−K(M). (13.3)

By our assumption in (13.3) equality holds, i.e. P(E) and K(H1) are complementary in
P(Ec). Moreover, Ind−K(H1) = Ind−K(M), hence L1 is a Hilbert space with respect to the

sum inner product.
In particular P(E) is contained in P(Ec) as a set of functions and the inclusion map

is a contraction. The inclusion cannot be isometric, since the uniqueness part of Theorem

12.2 would then imply that

(
u
v

)

6∈ K(M).

Consider the mapping

ϕ :

(
F+

F−

)

7→ (1, 0)ME

(
F+

F−

)

= AF+ +BF−.

Since Ind−K(H1) = Ind−K(M), the mapping ϕ is a partial isometry of K(M) onto K(H1)

and kerϕ is a Hilbert space. Clearly P(E) ∩ K(H1) = ϕ(L+), and kerϕ ⊆ L+. Since by
the previous steps of this proof L1 is a Hilbert space in the sum inner product, we conclude

that L+ endowed with the inner product (13.2) is a Hilbert space. Corollary 13.4 shows that
dim L+ = 1, and Lemma 13.2 implies that domS is contained isometrically in P(Ec).

Since the relation [

(
u
v

)

,

(
u
v

)

]L+ > 0 holds, we have

[uA+ vB, uA+ vB]P(E) > 0 or [

(
u
v

)

,

(
u
v

)

]K(M) > 0.

In the first case P(E)l is nondegenerated. We show that in the second case P(E)u is

nondegenerated. Assume that [

(
u
v

)

,

(
u
v

)

]K(M) = 1 and put (Au, Bu) := (A,B)M(u
v
)

with

M(u
v
) :=

(
1 − uvz uuz
−vv 1 + uvz

)

.

Then P(Eu) = P(E) as a set of functions. Consider the factorization

M = M(u

v
) · (M

−1
(u

v
)M

︸ ︷︷ ︸

:=M1

).



Since K(M(u
v
)) is contained isometrically in K(M) and since

M(u
v
)

(
u
v

)

=

(
u
v

)

, (13.4)

we find from [ADSR1] that

(
u
v

)

6∈ K(M1). By Theorem 12.2 the space P(Eu) is contained

isometrically in P(Ec) and hence equals P(E)u.

Proof : (of Theorem 13.1) Let E0 ∈ HB0 be such that the multiplication operator in the

space P(E) is densely defined, e.g. choose E0(z) = e−iz. Define functions

Ea := E0Ma, Eb := E0Mb, Ec := E0Mc,

then the space P(E0) is isometrically contained in P(Ea), P(Eb) and P(Ec). We have

Ec = EaMac, Ec = EbMbc,

hence we may consider the spaces P(Ea)
l,P(Ea)

u,P(Eb)
l,P(Eb)

u with the convention that

if, say, P(Ea) is contained isometrically in P(Ec) that then P(Ea)
l = P(Ea)

u = P(Ea).
We assume first that both, P(Ea) and P(Eb), are not contained isometrically in

P(Ec). By Corollary 13.4 the codimension of P(Ea)
l (P(Eb)

l) in P(Ea) (P(Eb)) is one.
The ordering theorem Proposition 11.3 shows that there occurs one of the following three

situation:

(i) P(Ea)
u ⊆ P(Eb)

l,

(ii) P(Ea)
u = P(Eb)

u and P(Ea)
l = P(Eb)

l,

(iii) P(Eb)
u ⊆ P(Ea)

l.

Consider the case (i). Then we have the following picture:
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Assume first that [

(
u
v

)

,

(
u
v

)

]K(Mac) = 1, then, by Proposition 13.5, we have P(Ea)
u =

P(Eu
a ) with (Au

a , B
u
a ) = (Aa, Ba)M(u

v
). Since K(M(u

v
)) is a Hilbert space, Ind−P(Eu

a ) =
Ind−P(Ea). Moreover, P(Eu

a ) is contained isometrically in P(Eb), hence there exists a

matrix Maub ∈ M1
κ, κ = Ind−P(Eb) − Ind−P(Eu

a ), such that (Ab, Bb) = (Au
a, B

u
a )Maub.

Since

(
u
v

)

6∈ K(Maub), the matrix

Mab := M(u
v
)Maub

is contained in M1
κ, κ = Ind−P(Eb)− Ind−P(Ea). Since P(E0) is contained isometrically in

P(Ea), there exists a matrix M0,a ∈ M1
κ, κ = Ind−P(Ea), such that (Aa, Ba) = (A0, B0)M0a.

Now we can write (Ac, Bc) in two different ways:

(Ac, Bc) = (A0, B0)M0aMac = (A0, B0)M0aMabMbc.

By the uniqueness part of Theorem 12.2 we have

M0aMac = M0aMabMbc,

hence we obtain the desired factorization Mac = MabMbc.

Now assume that [uAa + vBa, uAa + vBa]P(Ea) = 1. Then P(Ea)
l is nondegerated,

P(Ea)
l = P(El

a) where

(Aa, Ba) = (Al
a, B

l
a)M(u

v
).

Consider the transfer matrix Malb. Since the space P(Eb) contains isometrically P(Eu
a ), it

contains in particular the element uAa + vBa which is equal to uAl
a + vBl

a by (13.4). Hence
(
u
v

)

∈ K(Malb). Moreover,

[

(
u
v

)

,

(
u
v

)

]K(M
alb

) = [uAl
a + vBl

a, uA
l
a + vBl

a]P(Eb) ≤

≤ [uAl
a + vBl

a, uA
l
a + vBl

a]P(Ea) = 1, (13.5)

Since

(
u
v

)

is an element of norm 1 in K(M(u

v
)), and hence of norm −1 in K(M−1

(u

v
)
), it

follows that the space K(M−1
(u

v
))∩M

−1
(u

v
)K(Malb) endowed with the sum inner product is not a

Hilbert space. Hence, with the matrix

Mab := M−1
(u

v
)
Malb,

we find from [ADSR1] that

Ind−K(Mab) < Ind−K(Malb) + 1.

Since (Ab, Bb) = (Aa, Ba)Mab we must have in fact Ind−K(Mab) = Ind−K(Malb). Now we

again write (Ac, Bc) in two different ways:

(Ac, Bc) = (Aal , Bal)M(u
v
)MabMbc = (Aal , Bal)M(u

v
)Mac,



which implies as above that Mac = MabMbc.
The case (iii) is treated analogously, hence we may confine our attention to the situ-

ation (ii). We consider for demonstration the case that P(Ea)
l = P(Eb)

l is nondegenerated,
and that

[uAa + vba, uAa + vBa]P(Ea) = µ > 0, [uAa + vba, uAa + vBa]P(Eb) = λ > 0.

The other cases, i.e. µ > 0 and λ < 0, or µ < 0 and λ < 0, or if P(Ea)
u = P(Eb)

u is
nondegenerated, are treated similar.

In the considered case we have the picture:
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Assume that µ ≥ λ, then

Mab := M−1
1
µ
(u

v
)
M 1

λ
(u

v
) = M( 1

λ
− 1

µ
)(u

v
) ∈ M1

0,

and we obtain the desired factorization Mac = MabMbc by

(Ac, Bc) = (Al
a, B

l
a)M 1

µ
(u

v
)Mac = (Al

a, b
l
a)M 1

µ
(u

v
)MabMac,

and appealing to Theorem 12.2.
If one of P(Ea) and P(Eb) is contained isometrically in P(Ec), the above proof

works also, in fact with some simplifications.
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