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1 Introduction

In [R1]-[R4] J.F.Ritt proved some theorems concerning composition of (complex)
rational functions. These results, when considered for polynomials, expose some in-
teresting facts of the composition semigroup 〈C[z], ◦〉 of complex polynomials. For
example the classification of commutative subsemigroups of 〈C[z], ◦〉 relies heavily
on some results of [R1]-[R4] (compare [EW]). J.F.Ritt used analytic methods in
his proofs. At the present time there are different approaches and ’purely alge-
braic’ proofs of various of the mentioned results known, see e.g. [B1], [B2], [DW],
[E], [F], [FR1], [FR2], [Ja], [LN], [L], [S], [T], [Z]. At the same time generalizations
to polynomials over fields K with certain properties are obtained. Mostly K is
assumed to be algebraically closed and to have characteristic zero. The assump-
tion of algebraic closedness is in some respects no essential restriction (compare
f.i. [S], Lemma I.5.2). However, the consideration of fields with nonzero character-
istic is more complicated and requires (naturally) additional assumptions, see e.g.
[B2], [EN], [S], [Z]. In [B1] and [DW] there can be found some examples showing
differences between zero and nonzero characteristic.

It is the aim of the present note to continue these efforts: We generalize
some results of [R1]-[R4] to polynomials over algebraically closed fields of arbi-
trary characteristic. The theorems under consideration are: A characterization of
polynomials which satisfy a certain rational functional equation (Theorem 4.1),
a characterization of those pairs of polynomials which have, up to a multiplica-
tive constant, common iterates (Theorem 4.3), and a characterization of pairs of
permutable polynomials (Theorem 5.1). The additional assumption we impose is
that the characteristic of the coefficient field K is not a divisor of the degree of
any polynomial involved in the above statements. Some of the given proofs are
even new in the case of characteristic zero. Also our method is fairly elementary,
disregarding the application of a result of [Z] in the proof of Theorem 5.1.

The first part of this paper consists of two sections. In Section 2 we introduce
certain fields of (one-sided finite) power series and study composition of such se-
ries. These expositions, while elementary, provide some basic tools for our further
investigations. The subject of Section 3 is the study of the so-called Boettcher
function of a power series. In complex analysis, in particular in iteration theory,
the Boettcher function is commonly used (compare [Be], [Bo]). In the setting of
formal power series Boettcher functions have been introduced in [K].

The second part is devoted to the proof of the three theorems of Ritt mentioned
above. Section 4 is concerned with Theorem 4.1 and Theorem 4.3. In Section 5
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we characterize permutable polynomials. Our proof relies on the characterization
of so called standard solutions (‘Ritt’s second theorem’). An elementary proof of
this result can be found in [S], we use a stronger form as given in [Z].

2 Semigroups of power series

Throughout this paper let K be an algebraically closed field of characteristic π ≥ 0.
We consider formal power series with coefficients in the field K. As usual we write
a (possibly double infinite) formal power series as

f =
∞∑

n=−∞

anzn, an ∈ K. (2.1)

If f 6= 0 is given by (2.1), let

Ord0 f := inf{n ∈ Z|an 6= 0}, Ord∞ f := sup{n ∈ Z|an 6= 0},

and denote by R0 and R∞ the sets

R0 := {f |Ord0 f > −∞} ∪ {0}, R∞ := {f |Ord∞ f <∞} ∪ {0}.

If f and g are two formal power series, the sum f + g is defined as usual. If both
f and g are contained in R0 (R∞, respectively), we define the product f · g by
means of the Cauchy product. Clearly, 〈R0, +, ·〉 and 〈R∞, +, ·〉 are fields. Note
that

Ord0 (f + g) ≥ min{Ord0 f, Ord0 g}, Ord∞ (f + g) ≤ max{Ord∞ f, Ord∞ g},

where equality holds if Ord0 f 6= Ord0 g (Ord∞ f 6= Ord∞ g), that Ord0 (f · g) =
Ord0 f +Ord0 g (Ord∞ (f · g) = Ord∞ f +Ord∞ g) and that Ord0 f−1 = −Ord0 f

(Ord∞ f−1 = −Ord∞ f).

Remark 2.1. If f ∈ R0∩R∞, the inverse f−1 may have a different form depend-
ing on whether it is computed in R0 or R∞.

Many properties of R∞ can be deduced from the corresponding properties of
R0 (or vice versa) by making use of the following transformations. Define

ϕ :
∞∑

n=−∞

anzn 7→
∞∑

n=−∞

a−nzn,

and
Φ 1

z
f := (ϕf)−1 : R0 \ {0} → R∞ \ {0}.

Note that Φ 1
z

can also be considered as a mapping of R∞ \ {0} onto R0 \ {0} if

the (multiplicative) inverse is computed in the field R0. For notational reasons we
put Φ 1

z
0 := 0.
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In the following lemma we collect some properties of ϕ and Φ 1
z
. These are

proved by a straightforward calculation.

Lemma 2.2. The mapping ϕ satisfies ϕ ◦ϕ = id and Ord0 f = −Ord∞ ϕf . The
restriction of ϕ to R0 (R∞) is a field isomorphism onto R∞ (R0).

The mapping Φ 1
z

induces a bijection of R0 onto R∞. It is an isomorphism with

respect to ·. It satisfies Φ 1
z
◦Φ 1

z
= idR0 , where the right (left) factor is considered

as a mapping of R0 to R∞ (R∞ to R0). If f ∈ R0, then Ord∞ Φ 1
z
f = Ord0 f .

Definition 2.3. Let f, g ∈ R0, Ord0 g ≥ 1, be given and write

f =
∞∑

n=−k

anzn, g =
∞∑

n=1

bnzn.

We define a composition f ◦ g as

f ◦ g =

∞∑

n=−k

angn. (2.2)

In order to justify the definition (2.2), note that the n-th coefficient of f ◦ g is
a finite sum of products of coefficients al and powers of bm (compare [Je]).

Note that in certain cases the right hand side of the relation (2.2) makes sense
even if Ord0 g < 1. For example if the left factor f is contained in R0 ∩R∞, the
composition f ◦ g is well defined by (2.2) for any g ∈ R0, g 6= 0, as an element of
R0.

As usual the compositional power f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

will be denoted by f (n) whenever

it exists.
Let f, g ∈ R∞, Ord∞ g ≥ 1, be given. We define a composition f ◦ g as

f ◦ g := Φ 1
z

(

(Φ 1
z
f) ◦ (Φ 1

z
g)

)

.

Clearly the mapping Φ 1
z

is compatible with ◦. It is easily checked that this defi-
nition extends the usual definition for, say, rational functions.

In the following proposition we collect the basic properties of the introduced
notions. Since these results are seen by fairly elementary arguments for R0 and
follow on applying Φ 1

z
for R∞, we leave the proof to the reader.

Proposition 2.4. If f, g ∈ R0, Ord0 g ≥ 1, then Ord0 (f ◦ g) = Ord0 f ·Ord0 g.
The operations + and · are left distributive with respect to ◦, i.e. for f, g, h ∈ R0,
Ord0 h ≥ 1, we have

(f + g) ◦ h = (f ◦ h) + (g ◦ h), (f · g) ◦ h = (f ◦ h) · (g ◦ h), (f ◦ h)−1 = f−1 ◦ h.
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In particular, f ◦h = g ◦h implies f = g. The associative law for ◦ holds whenever
all occurring products are defined. The element z of R0 is neutral with respect to
◦. The set

R∗

0 := {f ∈ R0|Ord0 f = 1}
consists of units with respect to ◦. The same assertions hold if everywhere 0 is
replaced by ∞.

The notion introduced next is a technical but important tool for our argumen-
tations.

Definition 2.5. Let f =
∑∞

n=−∞
anzn, f 6= akzk. If Ord0 f = m > −∞, put

l0(f) := Ord0 (f − amzm)−m.

If Ord∞ f = m <∞, put

l∞(f) := m−Ord∞ (f − amzm).

For notational reasons we put l0(akzk) = l∞(akzk) =∞.
In the case that l0(f) > 1 (l∞(f) > 1) we say that f has gap form. In the

next lemma we list some properties of l0 and l∞. These results and those of the
following corollary will be used extensively in the subsequent sections.

Lemma 2.6. Let f, g ∈ R0. Then the following holds:

(i) For all k ∈ Z we have l0(z
kf) = l0(f).

(ii) If k ∈ Z \ {0} and the characteristic π of K does not divide k, we have
l0(f

k) = l0(f). Otherwise l0(f
k) > l0(f), if these numbers are finite.

(iii) In any case l0(f · g) ≥ min{l0(f), l0(g)}. Equality holds in this relation if
l0(f) 6= l0(g).

(iv) For all k ∈ N, we have l0(f ◦ zk) = kl0(f).

In case that Ord0 g ≥ 1 we have furthermore:

(v) If m = Ord0 f 6= 0, then

l0(f ◦ g) ≥ min{l0(gm), l0(f)Ord0 g} ≥ min{l0(g), l0(f)Ord0 g}.

In the first relation equality holds if l0(g
m) 6= l0(f)Ord0 g. If additionally

π ∤ m, then also in the second relation equality holds. In the case Ord0 f = 0,
we have l0(f ◦ g) = l0(f)Ord0 g.

(vi) If Ord0 g > 1 and π ∤ Ord0 g, then l0(g
(k)) = l0(g) for all k ∈ N.

(vii) If g ∈ R∗
0, we have l0(g

(−1)) = l0(g).
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Moreover, we have
l∞(Φ 1

z
f) = l0(f).

Hence the assertions (i)-(vii) hold for f, g ∈ R∞, if l0 (Ord0 ) is replaced by l∞

(Ord∞ ).
Proof : The relations (i) and (iv) are immediate.

Let f = zmf̃ , Ord0 f̃ = 0 and f̃ = a0 +
∑

∞

n=l0(f) anzn. Then

f̃k = ak
0 + kak−1

0 al0(f)z
l0(f) + . . . ,

which implies (ii). In order to show l0(f̃
−1) = l0(f̃), compare coefficients in the

relation 1 = f̃ · f̃−1. A similar argument shows that (iii) holds.
Using distributivity we obtain f ◦ g = gm · (f̃ ◦ g). Since

f̃ ◦ g = a0 + al0(f)g
l0(f) + . . . ,

we find l0(f̃ ◦ g) = l0(f)Ord0 g. Applying (ii) and (iii) yields (v).
The relation (vi) follows immediately from (v) and (ii), (vii) can be checked

easily by comparing coefficients in g(−1)◦g = z. The assertion concerning l∞(Φ 1
z
f)

follows by applying (ii).

Corollary 2.7. Let f, g ∈ R0 (R∞) and assume that

f ◦ zm = zm ◦ g,

for some m ∈ N. If π ∤ m and l0(g) 6= ml0(f) (l∞(g) 6= ml∞(f)), then f = azn

and g = bzn for some n ∈ N and a, b ∈ K, a = bm. If π|m, the same assertion
holds under the hypothesis l0(g) ≥ ml0(f) (l∞(g) ≥ ml∞(f)).
Proof : If f or g is a monomial, the assertion follows immediately. Otherwise,
(ii) of Lemma 2.6 implies l0(z

m ◦ g) = l0(g) if π ∤ m and l0(z
m ◦ g) > l0(g) if π|m.

By (iv) we have l0(f ◦ zm) = ml0(f).

For f ∈ R0, f 6= akzk, denote by k1 < k2 < . . . those indices with aki
6= 0. Then

the gap degree of f is defined as the number

L(f) := gcd{k2 − k1, k3 − k2, . . .}.

For f ∈ R∞ let L(f) := L(φf). For notational convenience we put L(akzk) := 0.
A related notion has been considered in [T].

Lemma 2.8. Let f ∈ R0 (R∞) be given. An element ε ∈ K satisfies a relation
of the form

f ◦ εz = δz ◦ f (2.3)
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for some δ ∈ K, if and only if εL(f) = 1.
Proof : In the case that f is a monomial or l(f) = 1, the assertion is obvious. If
f 6= akzk we write f =

∑∞

i=1 aki
zki and (2.3) for some ε 6= 1 implies

εki+1−ki = 1,

for all i, hence εL(f) = 1. The converse is seen by the same argument.

3 The Boettcher function

In this section we study conjugation with respect to ◦.

Definition 3.1. Let g ∈ R∗
0 be given. Denote by Φg the conjugation

Φgf := g(−1) ◦ f ◦ g, f ∈ R0, Ord0 f ≥ 1.

Clearly then:

Lemma 3.2. If f ∈ R0 and g ∈ R∗
0, then Ord0 f = Ord0 Φgf . The mapping Φg

is a composition isomorphism of {f ∈ R0|Ord0 f ≥ 1} onto itself.
In Definition 3.1 and Lemma 3.2 we can replace R0 and Ord0 f by R∞ and

Ord∞ f .
Next recall that certain elements of R0 (R∞) can be conjugated to powers zm.

This fact was first observed by L.Boettcher (see [Bo]), and is commonly used in
the framework of complex analysis (see e.g. [Be], [R1]). In an algebraic setting the
following result has been proved in principle in [K] for power series f contained
in R0. The assertion in the case f ∈ R∞ follows by an application of Φ 1

z
. Also

note that the uniqueness part of the following proposition appears implicitly in
the proof of Hilfssatz 4 of [K].

Proposition 3.3. Let f ∈ R0 (f ∈ R∞), Ord0 f = m ≥ 2 (Ord∞ f = m ≥ 2),
π ∤ m. Then there exists an element β ∈ R∗

0 (β ∈ R∗
∞), such that

Φβf = β(−1) ◦ f ◦ β = zm. (3.1)

With β also β ◦ εz satisfies (3.1) if εm−1 = 1. Conversely, any element of R∗
0

(R∗
∞

) satisfying (3.1) is of this form.
If β satisfies (3.1), we refer to β as a Boettcher function of f . In the sequel

βf will be the generic notation for a Boettcher function of f . In the following
corollary we complete the answer to the question whether in the case π|Ord0 f a
Boettcher function exists or not.
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Corollary 3.4. Let f and m be as in Proposition 3.3, and assume that m = dπk

with k ≥ 1 and d ≥ 1. Then there exists a Boettcher function β of f if and only

if f can be written as g ◦ zπk

for some g.
Proof : Assume first that f ◦ β = β ◦ zm for some β. An application of the chain
rule for differentiation shows that f ′ = 0, i.e. f = f1 ◦ zπ. Hence f1 ◦ β1 = β ◦ z

m
π ,

where β1 is a solution of the equation β1 ◦ zπ = zπ ◦ β, i.e. the coefficients of β1

are exactly the π-th powers of the coefficients of β. If π|m
π

the chain rule again
shows that f ′

1 = 0. Proceeding inductively we end up with a relation of the form

fk ◦ βk = β ◦ zd (3.2)

where the coefficients of βk are exactly the πk-th powers of those of β. Moreover,

we have f = fk ◦ zπk

.

Conversely assume that f = g ◦ zπk

and consider first the case that d ≥ 2.
Then it is possible to solve the equation (3.2) with g in place of fk. This is seen
by the same argument as employed in the proof of Proposition 3.3, see [K]. Then,
clearly, f ◦ β = β ◦ zm.

If d = 1, a straightforward argument shows that there exists a choice of β in
order to satisfy f ◦ β = β ◦ zm.

Remark 3.5. As the following example shows, one cannot expect a uniqueness
result like Proposition 3.3, if π|m: Let β ∈ R0, Ord0 β ≥ 1, be such that every
nonzero coefficient is a (πk − 1)-th root of unity, then

zπk ◦ β = β ◦ zπk

.

In the following we study some properties of Boettcher functions.

Corollary 3.6. Let f be as in Proposition 3.3 and let n ∈ N. Then each
Boettcher function βf(n) of f (n) is of the form

βf(n) = βf ◦ εz, εmn
−1 = 1.

Proof : Note that

Φβf
(f (n)) = (Φβf

f)(n) = zmn

.

The assertion follows from the uniqueness part of Proposition 3.3.

In the sequel we will always consider polynomials as elements of R∞, since then
a nonlinear polynomial has a Boettcher function if π is not a divisor of its degree.
Clearly, an element f ∈ R∞ is a polynomial if and only if Ord0 f ≥ 0. Hence
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our main interest will be in studying Boettcher functions of elements of R∞. As
examples for Boettcher functions may serve:

Lemma 3.7. A Boettcher function βzm is given by βzm = z. If tn denotes the
Dickson polynomial of degree n, a Boettcher function is given by

βtn
= z +

1

z
. (3.3)

Moreover, a Boettcher function β−tn
is (z + 1

z
) ◦ αz, where αn−1 = −1.

Proof : The first assertion is self-evident. To prove (3.3) recall that (see f.i.
Corollary I.5.2 in [S])

tn ◦ (z +
1

z
) = (z +

1

z
) ◦ zn.

In the following some properties of Boettcher functions are collected.

Proposition 3.8. Let f ∈ R∞, Ord∞ f = m ≥ 2, π ∤ m, be given.

(i) If g ∈ R∗
∞ then βΦgf = g(−1) ◦ βf .

(ii) We have l∞(βf ) = l∞(f).

(iii) Assume that ε ∈ K satisfies εL(f) = 1, then βf commutes with εz. In fact
L(βf ) = L(f).

(iv) If k|L(βf ), and ε ∈ K, εk = 1, then for some δ ∈ K with δ(m−1)k = 1 we
have βεf = βf ◦ δz.

Proof : To prove the first assertion note that

(β
(−1)
f ◦ g) ◦ (g(−1) ◦ f ◦ g) ◦ (g(−1) ◦ βf ) = zm.

Assume next that f =
∑m

n=−∞
anzn, βf =

∑1
n=−∞

bnzn. Since f ◦ βf = βf ◦ zm,
we have

f ◦ β = am(b1z + b0 + b−1
1

z
+ . . .)m + am−1(b1z + b0 + b−1

1

z
+ . . .)m−1 + . . . =

= b1z
m + b0 + b−1

1

zm
+ . . . . (3.4)

If l∞(f) = k > 1, it follows from (3.4) by an inductive argument that l∞(βf ) = k.
If on the other hand l∞(f) = 1, there exists a linear polynomial L = z + c, such
that l∞(ΦLf) > 1, in fact c = −am−1

mam
. By the already proved statement

l∞(L(−1) ◦ βf ) = l∞(βΦLf ) > 1,
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hence l∞(βf ) = 1.

The assertions (iii) and (iv) are obvious if f is not of gap form. Assume that
l∞(f) > 1 and that ε is a primitive L(f)-th root of unity. By Lemma 2.8 there
exists a number l ∈ N, such that f ◦ εz = εlz ◦ f , hence for all k ∈ N and certain
numbers lk we have

zmk ◦ Φβf
(εz) = Φβf

(εlkz) ◦ zmk

.

Since ε is a root of unity εlk assumes only finitely many different values. For some
k Corollary 2.7 is applicable and shows εz ◦ βf = βf ◦ az, for some a ∈ K. Since
Ord∞ βf = 1, we must have a = ε, i.e. εz commutes with βf and we conclude that
L(f)|L(βf ).

Assume on the other hand that ε is a primitive L(βf )-th root of unity. Then
εz commutes with βf and we find

Φβf
(f ◦ εz) = zm ◦ εz = εmz ◦ zm.

Hence f ◦ εz = εmz ◦ f and we conclude that L(βf )|L(f).

To prove the remaining part let k|L(βf ) and εk = 1 be given. Then

β
(−1)
f ◦ εf ◦ βf = εz ◦ β

(−1)
f ◦ f ◦ βf = εz ◦ zm = δz ◦ zm ◦ δ−1z.

Lemma 3.9. Let f, g ∈ R∞, Ord∞ g ≥ 1, be given and assume that Ord0 (f ◦ g),
Ord0 g ≥ 0. Then also Ord0 f ≥ 0.

Proof : Write f = f+ + f− with Ord0 f+ ≥ 0 and Ord∞ f− < 0. Then
Ord∞ (f− ◦ g) < 0 and Ord0 (f+ ◦ g) ≥ 0. Since f ◦ g = (f+ ◦ g) + (f− ◦ g)
the assumption implies that f− ◦ g = 0, hence f− = 0.

Lemma 3.10. Let β ∈ R∗
∞

, l∞(β) > 1, n ∈ N, n ≥ 2, and ε ∈ K \ {0}. Assume
that

f = β ◦ zn ◦ β(−1), g = β ◦ εzn ◦ β(−1)

are both polynomials. Then β commutes with εz.

Proof : We have

β ◦ εz ◦ β(−1) ◦ f = β ◦ εz ◦ β(−1) ◦ β ◦ zn ◦ β(−1) = g.
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By Lemma 3.9, β(−1) ◦εz ◦β = L where L is a linear polynomial. Since l∞(β(−1) ◦
εz ◦ β) > 1, L must be equal to εz.

The following proposition characterizes permutable power series by means of their
Boettcher function. A partial result in this direction has been obtained in [K].

Proposition 3.11. Let f, g ∈ R∞, Ord∞ f = mf ≥ 2, Ord∞ g = mg ≥ 2,
π ∤ mf , mg, be given. Then f commutes with g if and only if

βg = βf ◦ εz,

for some ε with ε(mf−1)(mg−1) = 1.
Proof : Assume that f ◦ g = g ◦ f holds, then

zmf ◦ Φβf
g = Φβf

g ◦ zmf . (3.5)

Corollary 2.7 implies that Φβf
g = δzmg . Now (3.5) shows that δmf−1 = 1. Choose

ε such that εmg−1 = δ−1. Then

Φβf◦εz(g) = Φεz(Φβf
(g)) = ε−1z ◦ δzmg ◦ εz = zmg ,

hence βf ◦ εz is a Boettcher function for g. Clearly ε(mg−1)(mf−1) = 1.
Conversely, assume that βg = βf ◦εz for some ε with ε(mg−1)(mf−1) = 1. Then

f ◦ g = βf ◦ zmf ◦ β
(−1)
f ◦ βf ◦ εz ◦ zmg ◦ ε−1z ◦ β

(−1)
f =

= βf ◦ zmf ◦ ε1−mgz ◦ zmg ◦ β
(−1)
f = βf ◦ εmf (1−mg) ◦ zmf mg ◦ β

(−1)
f =

= βf ◦ε1−mgz ◦zmgmf ◦β(−1)
f = βf ◦εz ◦zmg ◦ε−1z ◦β(−1)

f ◦βf ◦zmf ◦β(−1)
f = g◦f.

4 Polynomials with a rational functional equation

and polynomials with a common iterate

The following result characterizes those polynomials f whose Boettcher function
is rational, i.e. Ord0 βf > −∞. Note that this condition means that f satisfies the
functional equation

f(β(z)) = β(zn), n = Ord∞ f,

for the rational function β (compare [R2]).
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Theorem 4.1. Let f be a polynomial, Ord∞ f = n ≥ 2, n 6= πk, and assume
that f ◦ β = β ◦ zn for some β ∈ R∗

∞
. Then Ord0 β > −∞, if and only if there

exists a linear polynomial L, such that ΦL(f) either is a power or up to the sign
a Dickson polynomial.
Proof : Let Ord0 β = −m > −∞, i.e.

β = bz + b0 + b1
1

z
+ . . . + bm

1

zm
,

and f ◦ β = β ◦ zn for the polynomial f . We assume that m ≥ 2 and deduce a
contradiction. Note that with β also L ◦ β satisfies these conditions (replacing f

by L ◦ f ◦ L−1). Hence we may assume that b0 6= 0.
Write f = anzn + . . . + a0. We compute some of the powers of z which occur

in f ◦ β or β ◦ zn. Let

i∗ := min{i ≥ 1|π ∤

(
n

i

)

},

and note that by our assumption n 6= πk we have i∗ ≤
[

n
2

]
. The highest (lowest)

powers occuring in βn are zn, zn−i∗ (z−mn, z−mn+i∗l0(β)). If follows that an−1 =
. . . = an−i∗+1 = 0 and an−i∗ 6= 0. The lowest power which occurs in βn−i∗ is
z−m(n−i∗). It follows that

−m(n− i∗) = −mn + i∗l0(β),

hence l0(β) = m, i.e. β is of the form bz + b0 + bm
1

zm .
Again we use the freedom of composing β with a linear polynomial from the

left and assume that b0 = 0. The highest (lowest) powers occuring in βn are
then zn, zn−i∗−mi∗ (z−mn, z−m(n−i∗)+i∗). If n − i∗ − mi∗ ≥ 0, we obtain with
similar arguments as above that m(n− i∗+mi∗) = m(n− i∗)+ i∗, a contradiction.
Otherwise it follows that f is a monomial, which obviously is a contradiction again.

If Ord0 βf = 1 we immediately have that f is conjugated to the power zn. If
Ord0 βf = −1, βf = bz + b1

1
z
, we can write

βf =
b

α
z ◦ (z +

1

z
) ◦ αz,

where α2 = b
b1

. It follows that

(z +
1

z
) ◦ α1−nz ◦ zn ◦ (z +

1

z
)(−1),

is a polynomial conjugated to f . Lemma 3.10 implies α1−n = ±1, and the assertion
follows.

If ΦL(f) is a power or a Dickson polynomial for some linear polynomial L, then
by Lemma 3.7 and Proposition 3.8 we have Ord0 βf ≥ −1.
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Remark 4.2. If Ord∞ f = πk, then Theorem 4.1 fails as Remark 3.5 shows.

However, by Corollary 3.4, the existence of β implies that f is conjugated to zπk

.
In the remaining part of this section we consider polynomials with a common

iterate (compare [R1] for the case ε = 1).

Theorem 4.3. Let f, g be polynomials of degree at least two, π ∤ Ord∞ f, Ord∞ g,
let ε ∈ K be such that εL(f) = εL(g) = 1 and let L be a linear polynomial such that
ΦL(f) has gap form. If for some numbers n, m ∈ N

εf (n) = g(m),

then L(f) = L(g) and there exists a polynomial h, l∞(h) > 1, L(f)|L(h), elements

χ1, χ2 ∈ K, χ
L(h)
i = 1 and numbers l, k ∈ N, such that

f = ΦL−1(χ1h
(l)), g = ΦL−1(χ2h

(k)).

If already l∞(f) > 1, we have in fact χ
L(f)
i = 1.

Before we can prove Theorem 4.3, we need another lemma.

Lemma 4.4. Let g1, g2 ∈ R∞, g ∈ R∗
∞

and n, m ∈ N be given, such that m|n
and

Ord0 (g1 ◦ zn ◦ g2), Ord0 (g ◦ zm ◦ g2) ≥ 0.

Then also Ord0 (g1 ◦ z
n
m ◦ g(−1)) ≥ 0.

Proof : We have

(g1 ◦ z
n
m ◦ g(−1)) ◦ (g ◦ zm ◦ g2) = g1 ◦ zn ◦ g2,

and the assertion follows by Lemma 3.9.

Proof (of Theorem 4.3): We consider first the case that l∞(f) > 1. Note that
this implies l∞(g) > 1. Assume that εf (n) = g(m) and let βf and βg be Boettcher
functions of f and g. By Corollary 3.6 and Proposition 3.8 we find

βg = βf ◦ δ̃z, (4.1)

for some δ̃ ∈ K. Note that (4.1) implies that L(βf ) = L(βg). Clearly our assump-
tion implies (Ord∞ f)n = (Ord∞ g)m, hence there exist numbers r, s, t ∈ N such
that Ord∞ f = rs and Ord∞ g = rt. Write u := gcd{s, t} = bt− as with a, b ∈ N.
Then

f (a) = βf ◦ zras ◦ β
(−1)
f , g(b) = βg ◦ zrbt ◦ β(−1)

g = (βf ◦ δ̃1−rbt

z) ◦ zrbt ◦ β
(−1)
f ,

are both polynomials. By Lemma 4.4 also

h := (βf ◦ δ̃1−rbt

z) ◦ zru ◦ β
(−1)
f (4.2)
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is a polynomial. Note that (4.2) implies l∞(h) = l∞(βf ) and L(βf )|L(h).
Consider the polynomials

h( s
u

) = (βf ◦ γz) ◦ zrs ◦ β
(−1)
f , f = βf ◦ zrs ◦ β

(−1)
f .

By Lemma 4.4 also (βf ◦ γz) ◦ z ◦β(−1)
f is a polynomial, and hence must equal γz.

We find that
f = γ−1h( s

u
), γL(f) = 1.

A similar argument applies to g and yields the desired result.
If l∞(f) = 1, also ε = 1, hence our assumption reads as f (n) = g(m). The

assertion in this case follows from the already proved applied to ΦL(f) and ΦL(g).

5 Permutable polynomials

In this section we prove a characterization of permutable polynomials (compare
[R4], [T]).

Theorem 5.1. Let f, g ∈ K[z], ñ = Ord∞ f, m̃ = Ord∞ g ≥ 2, π ∤ ñ, m̃, be given
and assume that f ◦ g = g ◦ f . Then there exists a linear polynomial L, such that
one of the following cases occurs:

(i) ΦL(f) = αfzñ, ΦL(g) = αgz
m̃, with αñ−1

g = αm̃−1
f .

(ii) ΦL(f) = αf tñ, ΦL(g) = αgtm̃, with α2
f = α2

g = 1 and αñ−1
g = αm̃−1

f .

(iii) ΦL(f) = αfh(s), ΦL(g) = αgh
(t), for some h ∈ K[z] with αfz ◦ h = h ◦ αf z,

αgz ◦ h = h ◦ αgz.

Remark 5.2. If we drop the assumption π ∤ ñ and π ∤ m̃ the conclusion of
Theorem 5.1 is not true as the following example shows: Let K be an algebraically
closed field of characteristic π 6= 0 and consider the polynomial g := zπ. Obviously
g permutes with a polynomial f if and only if every coefficient of f is a (π− 1)-th
root of unity (compare Remark 3.5).

It is easily seen that for every k ≥ 4 there exists a choice of f , Ord∞ f = k,
such that f and g cannot be represented as in (i), (ii) or (iii) of Theorem 5.1. In
fact, choose

f(z) = zk + zk−2 + zk−3 + . . . + z + 1.

If f could be represented as in (i), we would obtain a relation of the form f =
L1◦zk ◦L2 for some linear polynomials L1, L2, a contradiction since all coefficients
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of f with exception of the (k − 1)-th are nonzero. A similar argument shows that
(ii) cannot occur. Now assume (iii). Since π is prime, we must have t = 1. Hence
h = L1 ◦ zπ ◦ L2 for some linear polynomials L1, L2 and since αgz permutes with
h, we conclude that f = M1 ◦ zπs ◦M2 for some linear polynomials M1, M2, a
contradiction as we have seen above.

To prepare the proof of Theorem 5.1 we provide another lemma:

Lemma 5.3. Let p, q be linear polynomials, m ≥ 3 and r ≥ 2 be given. Assume
that π ∤ m, (r + m) and that there exist linear polynomials L1 and L2 such that

L1 ◦ zrp(z)m = zrq(zm) ◦ L2, (5.1)

then p and q are multiplications, i.e. p = εz, q = δz.
Proof : Without loss of generality we may assume that L1 = z + µ, L2 = z + ν.
Write p = εz + α, q = δz + γ, then (5.1) becomes

zr(εz + α)m + µ = (z + ν)r(δ(z + ν)m + γ). (5.2)

Comparing the coefficients of zr+m, zr+m−1, zr+m−2 in (5.2) yields, since m ≥ 3,

εm = δ, mεm−1α = δ(r + m)ν,

(
m

2

)

εm−2α2 = δ

(
r + m

2

)

ν2. (5.3)

Consider first the case π 6= 2. If π ∤ (m− 1), π ∤ (r + m− 1) and α 6= 0, the above
relations imply

m

r + m
=

εν

α
=

m− 1

r + m− 1
,

a contradiction since r 6= 0. We conclude that α = 0 and clearly then also ν = 0.
If π ∤ (m−1) and π|(r +m−1) (π|(m−1) and π ∤ (r +m−1)) we obtain from the
last relation in (5.3) that α = 0 (ν = 0). The second relation then implies ν = 0
(α = 0).

Now assume that π|(m− 1) and π|(r + m− 1), which is in particular the case
if π = 2. Then π|r and a comparison of the coefficients of z1 in (5.2) yields
δ(r + m)νr+m−1 = 0. Hence ν = 0 and thus also α = 0.

Finally, comparing the coefficient of z0 (zr) in (5.2) shows that µ = 0 and
γ = 0.

Now we come to the proof of Theorem 5.1, which is done in several steps.
Choose L such that ΦL(f) has gap form. An elementary consideration using

Lemma 2.6 shows that l∞(ΦL(f)) = l∞(ΦL(g)). Hence we may assume throughout
that l∞(f) = l∞(g) > 1 which will imply that we may choose L = z. Also, without
loss of generality, let ñ ≥ m̃.

Step 1: First we reduce the proof of Theorem 5.1 to the case that Ord∞ f ∤ Ord∞ g

and Ord∞ g ∤ Ord∞ f .
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We construct inductively a (finite) sequence of polynomials fi, gi: Put f0 = f ,
g0 = g, and if fi and gi have already been determined, Ord∞ fi, Ord∞ gi 6= 1, and
satisfy Ord∞ fi|Ord∞ gi (or Ord∞ gi|Ord∞ fi, respectively), then define fi+1 and
gi+1 by

fi+1 = fi, gi = gi+1 ◦ fi,

or gi+1 = gi, fi = fi+1 ◦ gi, respectively. This construction is possible due to
Proposition 1 of [T] since we have fi ◦ gi = gi ◦ fi for all i (Proposition 1 in [T] is
the only result proved there for arbitrary characteristic). The constructed sequence
is finite since in each step at least one of the degrees of fi and gi strictly decreases.
It terminates if either at some point Ord∞ fi ∤ Ord∞ gi and Ord∞ gi ∤ Ord∞ fi,
or if one of the degrees of fi and gi is 1. In order to visualize this construction
consider the following example:

f = f0 ← f1 = f2 = f3

տ ւ ւ
g = g0 = g1 ← g2 ← g3

In particular, since we assume that f and g are of gap form and π does not divide
the degree of any of the occuring polynomials, all members of the constructed
sequences are of gap form.

Assume first that the last polynomial (in the example g3) is linear, i.e. of the
form γz. Going backwards in the above construction, we find that f and g are of

the form (iii) (in the example we have f = γf
(3)
3 , g = γf

(2)
3 ).

Now consider the case that the last polynomials satisfy Ord∞ fi ∤ Ord∞ gi and
Ord∞ gi ∤ Ord∞ fi. Note that this assumption automatically excludes case (iii). If
the assertion of the theorem holds for fi and gi, i.e. fi and gi are of the form (i) or
(ii), so are f and g. This is again seen by going backwards the above construction.

During the remainder of our argumentation we assume that Ord∞ f ∤ Ord∞ g

and Ord∞ g ∤ Ord∞ f , and hence our efforts will have as their aim to show that
(i) or (ii) of Theorem 5.1 holds.

Step 2: We show that if f (k) and g(l) are of the form (i) or (ii) for some k, l ∈ N,
then f and g also are.

Assume first that f (k) = α1z
ñk

, g(l) = α2z
m̃l

. By (vi) of Lemma 2.6, we
conclude that f = αfzñ, g = αgz

m̃. Since f commutes with g we must have
αñ−1

g = αm̃−1
f .

Next we assume that f (k) = α1tñk and g(l) = α2tm̃l . By Proposition 3.3 and
Lemma 3.7 a Boettcher function of f is given by

β = (z +
1

z
) ◦ εz,

for some ε. Lemma 3.10 shows that ε1−ñ = ±1, hence f = ±tñ. A similar
argument shows that g = ±tm̃.

Step 3: Let ñ = Ord∞ f = nd, m̃ = Ord∞ g = md, with d = gcd{ñ, m̃}. Then m
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and n are relatively prime and at least two. We show, using Step 2, that without
loss of generality

m, n ≥ 4, |m− n| ≥ 3, 1 <
n

m
< 2, (5.4)

can be assumed.
The numbers log Ord∞ f and log Ord∞ g are linearly independent over Z, hence

there exist numbers k, l ∈ N, such that

0 < k log Ord∞ f − l log Ord∞ g < log
√

2.

This implies Ord∞ f (k) ∤ Ord∞ g(l), Ord∞ g(l) ∤ Ord∞ f (k), and 1 < Ord∞f(2k)

Ord∞g(2l) < 2,

hence the polynomials f (2k) and g(2l) meet our requirements (5.4).

Step 4: In this step we define three sequences of polynomials fi, gi, hi. This
construction is analogous to that in [R4]. By Proposition 1 of [T] there exist
polynomials f0, g0, h0, such that

f = f0 ◦ h0, g = g0 ◦ h0,

and Ord∞ h0 = gcd{Ord∞ f, Ord∞ g}. It follows that h0 ◦ f0 and h0 ◦ g0 are
permutable, and by the same argument as above we find polynomials f1, g1, h1,
such that

h0 ◦ f0 = f1 ◦ h1, h0 ◦ g0 = g1 ◦ h1, (5.5)

Ord∞ h1 = Ord∞ h0. Since f0 ◦ h0 ◦ g0 = g0 ◦ h0 ◦ f0 we have f0 ◦ g1 = g0 ◦ f1.
Proceeding inductively we obtain sequences fi, gi, hi, which satisfy

hi ◦ fi = fi+1 ◦ hi+1, hi ◦ gi = gi+1 ◦ hi+1, (5.6)

fi ◦ hi ◦ gi = gi ◦ hi ◦ fi, fi ◦ gi+1 = gi ◦ fi+1. (5.7)

Since l∞(f) = l∞(g) > 1, the polynomials fi, gi, hi may be chosen such that all
of them have gap form. Then l∞(h0) = l∞(f) = l∞(g) and l∞(hi+1) = l∞(fi) =
l∞(gi) for i ≥ 0.

We claim that if at some stage fi = L1 ◦ zn, gi = L2 ◦ zm and hi = γzd,
for some γ ∈ K and linear polynomials L1, L2, then f and g are of the form (i).
In fact, by comparing the gaps in the first equation of (5.7), L1 and L2 must
be multiplications. By (5.6) also fi−1, gi−1 and hi−1 are monomials. Proceeding
inductively yields the claim.

Recall that Ord∞ fi = n, Ord∞ gi = m, that these numbers are relatively
prime, π ∤ n, m and that Ord∞ hi = d.

Step 5: Now the results of [Z] on standard solutions are applied to the second
equation of (5.7). We assume that m and n are chosen as in Step 3 and that
m < n. By the Main Theorem of [Z], there exist for each i linear polynomials Li,j,
j = 1, . . . , 4, such that one of the following cases occurs:
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(i) for some polynomials pi, qi which are linear by our choice of m and n, we
have

Li,1 ◦ fi ◦ L
(−1)
i,3 = zrpi(z)m

Li,3 ◦ gi+1 ◦ Li,2 = zm

Li,1 ◦ gi ◦ L
(−1)
i,4 = zm

Li,4 ◦ fi+1 ◦ Li,2 = zrpi(z
m)

, (5.8)

(ii) for some λi ∈ K \ {0} and the Dickson polynomials tn and tm, we have

Li,1 ◦ fi ◦ L
(−1)
i,3 = λ−mn

i z ◦ tn ◦ λm
i z

Li,3 ◦ gi+1 ◦ Li,2 = λ−m
i z ◦ tm ◦ λiz

Li,1 ◦ gi ◦ L
(−1)
i,4 = λ−mn

i z ◦ tm ◦ λn
i z

Li,4 ◦ fi+1 ◦ Li,2 = λ−n
i z ◦ tn ◦ λiz

, (5.9)

Note that the cases - power solution or Dickson solution - of [Z] when solving
fi ◦ gi+1 = gi ◦ fi+1 for different values of i cannot mix. This is seen as follows:
since we assume m ≥ 4 and π ∤ m, we have L(tm) = 2 and therefore tm is not of
the form M1 ◦ zm ◦M2 with linear M1, M2.

Step 6: Consider case (i) of Step 5. By our choice of n and m due to Step 3 and
Lemma 5.3, we find comparing the representations of fi+1 in the equations (5.8)
for i and i + 1 that pi = εiz. From the representations of fi, gi and gi+1 in (5.8)
we conclude that Li,2, Li,3, Li,4 have no constant term. Hence fi+1 and gi+1 are
monomials for all i ≥ 0. If for some i ≥ 0 also hi+1 is a monomial we are done.
Otherwise (5.6) shows that l∞(hi+1) = (r+m)l∞(hi) for all i ≥ 1, a contradiction.

Step 7: Consider case (ii) of Step 5. Again Li,2, Li,3 and Li,4 have no constant
term. Comparing the representations of f1 and g1 in the equations (5.9) for i = 0
and i = 1, we obtain

L
(−1)
1,1 ◦ λ−mn

1 z ◦ tn ◦ λm
1 z ◦ L1,3 = L

(−1)
0,4 ◦ λ−n

0 z ◦ tn ◦ λ0z ◦ L
(−1)
0,2 ,

L
(−1)
1,1 ◦ λ−mn

1 z ◦ tm ◦ λn
1 z ◦ L1,4 = L

(−1)
0,3 ◦ λ−m

0 z ◦ tm ◦ λ0z ◦ L
(−1)
0,2 .

Since tn (tm) has gap form and the gap degree L(tn) (L(tm)) equals two, we
conclude by Lemma 2.8 that

λm
1 z ◦ L1,3 ◦ L0,2 ◦ λ−1

0 z = ±z, λn
0 z ◦ L0,4 ◦ L

(−1)
1,1 ◦ λ−mn

1 z = ±z, (5.10)

and

λn
1 z ◦ L1,4 ◦ L0,2 ◦ λ−1

0 z = ±z, λm
0 z ◦ L0,3 ◦ L

(−1)
1,1 ◦ λ−mn

1 z = ±z. (5.11)

Comparing these relations, we find

λn
0 z ◦ L0,4 = ±λm

0 z ◦ L0,3, λm
1 z ◦ L1,3 = ±λn

1 z ◦ L1,4.
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If we put

f∗

0 = f0 ◦ L
(−1)
0,3 ◦ λ−m

0 z, g∗0 = g0 ◦ L
(−1)
0,3 ◦ λ−m

0 z, h∗

0 = λm
0 z ◦ L0,3 ◦ h0,

f∗

1 = λm
0 z ◦ L0,3 ◦ f1, g∗1 = λm

0 z ◦ L0,3 ◦ g1, h∗

1 = h1 ◦ L
(−1)
0,3 ◦ λ−m

0 z,

we get from (5.5)
h∗

0 ◦ f∗

0 = f∗

1 ◦ h∗

1, h∗

0 ◦ g∗0 = g∗1 ◦ h∗

1.

Substituting from the equations (5.9) and using (5.10) leeds to

h̃0 ◦ tn = ±(tn ◦ h̃1), h̃0 ◦ tm = ±(tm ◦ h̃1),

where h̃0 = h∗
0 ◦ L

(−1)
0,1 ◦ λ−mn

0 z and h̃1 = λ0z ◦ L
(−1)
0,2 ◦ h∗

1. Now conjugate these

relations with a Boettcher function β = z + 1
z

of tn:

±Φβh̃0 ◦ zn = zn ◦ Φβ h̃1, ±Φβh̃0 ◦ zm = zm ◦ Φβ h̃1.

If Φβ h̃0 (Φβ h̃1) is not of the form εzd (δzd), then by Corollary 2.7 both relations

nl∞(Φβ h̃0) = l∞(Φβ h̃1) and ml∞(Φβ h̃0) = l∞(Φβ h̃1) hold, a contradiction. We
arrive at the conclusion that

Φβ h̃0 = εzd.

Lemma 3.10 implies that ε = ±1 and h̃0 = εtd. Substituting this relation and
the first and third relation of (5.9) into f = f0 ◦ h0, g = g0 ◦ h0, and using the
definition of h̃0 shows that f and g are of the form (ii) of Theorem 5.1.

All assertions of Theorem 5.1 are proved.
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