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Abstract. We show that every matrix valued generalized Nevanlinna function can be represented

as a u-resolvent of a certain selfadjoint relation acting in a Pontryagin space. The negative index

of this Pontryagin space may be larger than the number of negative squares of the given function.

The minimal index of negative squares which is needed to obtain such a representation is determined.

In the case of scalar functions, the results presented give rise to some new classes of generalized

Nevanlinna functions.

1. Introduction

It is well known (see, e.g., [KL2]) that a matrix valued generalized Nevanlinna func-
tion q : ̺(q) → Cn×n, ̺(q) ⊆ C \ R, with domain of holomorphy ̺(q), admits a
representation (for z0 ∈ ̺(q)) as

q(z) = q(z0)
∗ + (z − z0)Γ

∗
q(I + (z − z0)(Aq − z)−1)Γq, z ∈ ̺(q),(1.1)

where Aq is a certain selfadjoint relation acting in a Pontryagin space Pq and where
Γq is a linear mapping of Cn into Pq. Moreover, the negative index of Pq equals the
number of negative squares of Nevanlinna kernel

Nq(z, w) =

{
q(z)−q(w)∗

z−w
, z 6= w

q′(z) , z = w

of q. It is shown in this note that there exists a representation of the form

q(z) = Γ∗(A − z)−1Γ, z ∈ ̺(q),(1.2)
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where A is a selfadjoint relation in a Pontryagin space P . Here the negative index of
P is possibly larger than the number of negative squares of q.

To make these explanations more precise, recall that for n ∈ N and κ ∈ N ∪ {0}
the set Nn×n

κ consists of all n × n-matrix valued functions q, meromorphic in C \ R,
which satisfy q(z) = q(z)∗ for z in their domain of holomorphy ̺(q), and are such that
the Nevanlinna kernel Nq has κ negative squares on ̺(q). The kernel condition means
that for each m ∈ N, z1, . . . , zm ∈ ̺(q) and x1, . . . , xm ∈ Cn the quadratic form

Q(ξ1, . . . , ξm) =

m∑

i,j=1

(Nq(zi, zj)xi, xj)ξiξj

has at most κ negative squares, and that for some choice of m, z1, . . . , zm and x1, . . . , xm

this upper bound is attained. Here (., .) denotes the usual inner product on Cn. The
functions in N n×n

κ are called generalized Nevanlinna functions. If n = 1, i.e. if q is a
scalar function, we will write N κ instead of N 1×1

κ .
If P is a Pontryagin space we denote by ind− P (ind+ P) the negative (positive)

index of P, i.e., the dimension of a maximal negative (positive) subspace of P. For
a subspace L of P let ind0 L = dimL◦, where L◦ denotes the isotropic part of L:
L◦ = L ∩ L⊥.

If q ∈ Nn×n
κ the space Pq occurring in the representation (1.1) has negative index κ.

A result of M.G.Krein and H.Langer (see [KL1], Satz 1.5) gives, under certain addi-
tional assumptions, a necessary and sufficient condition for a scalar function q ∈ N κ,
to admit a representation (1.2) with ind− P = κ. It follows from our considerations
that for all q ∈ N κ there exists a representation (1.2) if we allow ind− P = κ+1. Note
that in the scalar case (1.2) is just a representation of q by a so called u-resolvent (we
put u = Γ(1)):

q(z) = [(A − z)−1u, u], z ∈ ̺(q).(1.3)

In some generalizations of Krein’s formula concerning the description of generalized
resolvents of a symmetric operator, u-resolvents occur as a class of parameters, and,
more generally, functions of the form (1.2) where R (Γ) is a neutral subspace of P also
occur.

In this note we determine the minimal negative index ν, such that a given function
q ∈ Nn×n

κ admits a representation (1.2), where the selfadjoint relation A acts in a
Pontryagin space with negative index ν and where R (Γ) is neutral. It turns out that
such a representation always exists and that ν ≤ κ + n.

In Section 2 we define a number κm and show that there exists a representation
(1.2) where ind− P = κm. Moreover, it is proved that any (in some sense) minimal
representation is unitarily equivalent to the representation constructed. Hence, the
number κm is actually the minimal negative index such that q admits a representation
(1.2), i.e., κm = ν. In Section 3 we show that the number κm is given by a kernel
condition on the function q. Moreover, we determine the number κm, under certain
additional assumptions, via analytic properties of q. Finally, in Section 4, we introduce
and study some new classes of generalized Nevanlinna functions which are represented
by u-resolvents of extensions of a finite dimensional shift operator.

For elementary facts concerning the geometry of Pontryagin spaces we refer to [IKL].
We also use some results of [DS] on symmetric relations. Our notation in this respect
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is also similar to [DS] and [IKL].
Representations of Nevanlinna functions as u-resolvents can also be obtained using

the theory of so-called triplet spaces (see e.g. [Be], [KW], [DLZ]). This approach differs
from the method presented here.

2. A representation of q

In the following let q ∈ N n×n
κ be fixed. Let us recall from [KL2] that in the rep-

resentation (1.1) the space Pq is the Pontryagin space obtained by factorization with
respect to its isotropic part and completion from the linear space of all finite formal
sums

Lq = {
∑

i

aiezi
|ai ∈ Cn, zi ∈ ̺(q)},

endowed with the inner product defined by

[aez, bew]Lq
= (Nq(z, w)a, b), a, b ∈ Cn, z, w ∈ ̺(q).

We will drop indices at inner products whenever no confusion can occur. The relation
Aq ⊆ P2

q is defined as the closure of

Sq = 〈(
∑

i

aiezi
;
∑

i

ziaiezi
) ∈ L2

q|
∑

i

ai = 0〉,

where 〈. . .〉 denotes the linear span of the elements between the brackets.
For h ∈ Cn consider the linear functional Fh : Lq → C, defined by

Fh(aez) = (q(z)a, h), a ∈ Cn, z ∈ ̺(q).

If Fh induces a well-defined continuous functional on Pq, there exists a unique element
u(h) ∈ Pq, such that the relation

(q(z)a, h) = [aez, u(h)], a ∈ Cn, z ∈ ̺(q)

holds. Clearly the mapping h 7→ u(h) is linear.
Let G ⊆ Cn be the space of all elements h, such that Fh induces a well-defined

continuous functional on Pq. Define an inner product on G by

[a, b]G = [u(a), u(b)], a, b ∈ G.(2.1)

The space G can be characterized by means of the relation Aq.

Lemma 2.1. Let h ∈ Cn. Then h ∈ G if and only if for some z0 ∈ ̺(q) we have
hez0

∈ D (Aq) and there exists an element u with (hez0
; u) ∈ Aq − z0, such that

(q(z0)a, h) = [aez0
, u].(2.2)

In this case (2.2) holds for all z0 ∈ ̺(q), i.e. u = u(h).
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Proof.The representation (1.1) of q shows that

(q(z)a, h) = (q(z0)a, h) + (z − z0)[(I + (z − z0)(Aq − z)−1)aez0
, hez0

].

Assume that hez0
∈ D (Aq) and let (hez0

; u) ∈ Aq − z0, then

(q(z)a, h) = (q(z0)a, h)+

+(z − z0)[(Aq − z0)
−1(I + (z − z0)(Aq − z)−1)aez0

, u] =

= ((q(z0)a, h) − [aez0
, u]) + [aez, u].(2.3)

Conversely, for h ∈ G, let (q(z)a, h) = [aez, u(h)]. We show that (hez0
; u(h)+z0hez0

) ∈
Aq = A∗

q :
[aez − aez0

, u(h) + z0hez0
] − [zaez − z0aez0

, hez0
] =

= (q(z)a, h) − (q(z0)a, h) + z0(
q(z) − q(z0)

z − z0
a, h) − z0(

q(z0) − q(z0)

z0 − z0
a, h)−

−z(
q(z)− q(z0)

z − z0
a, h) + z0(

q(z0) − q(z0)

z0 − z0
a, h) = 0.

Hence hez0
∈ D (Aq) and the assertion follows. 2

Put H0 = G⊥, where the orthogonal complement has to be understood with respect
to the usual inner product (., .) of Cn, and let H1 be an isomorphic copy of H0. If
n′ = dimH0 = dimH1, then as a linear space H0

∼= H1
∼= Cn′

.

Definition 2.2. Let L be the linear space

L = Lq+̇H0+̇H1

endowed with the inner product defined by (a, b ∈ Cn, z, w ∈ ̺(q), h0, h
′
0 ∈ H0,

h1, h
′
1 ∈ H1)

[aez + h0 + h1, bew + h′
0 + h′

1]L = (Nq(z, w)a, b)Cn + (q(z)a, h′
0)Cn+

+(h0, q(w)b)Cn + (h1, h
′
0)Cn′ + (h0, h

′
1)Cn′ .

In particular [., .]L|Lt2 = [., .]Lq
, Lq ⊥ H1, and H0 and H1 are skewly linked neutral

spaces. Denote by P the Pontryagin space obtained from L by factorization with
respect to its isotropic part and completion:

P = L̂/L◦.

Note that Lq/(Lq)
◦ ∼= Pq and P = Lq +H0 +H1. Here denotes the closure in the

space P. In the following denote by P the orthogonal projection of P onto (H0+̇H1)
⊥.

Lemma 2.3. The restriction P |
Lq

is an isometry of Lq onto (H0+̇H1)
⊥. In fact

[Pf, g] = [f, g], f, g ∈ Lq.(2.4)
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Proof.Let f ∈ Lq, then Lq ⊥ H1 shows that (I − P )f ⊥ H1. As H1 is a hy-
permaximal neutral subspace of H0+̇H1 it follows that (I − P )f ∈ H1. Thus, for
f, g ∈ Lq

[f, g] = [Pf, g] + [(I − P )f, g] = [Pf, g],

in particular P |
Lq

is an isometry.

If f1 ∈ (H0+̇H1)
⊥ we can write f1 = f +h0 +h1 with f ∈ Lq, h0 ∈ H0 and h1 ∈ H1.

Therefore f1 = Pf1 = Pf . 2

Since ind− Lq = κ and ind− (H0+̇H1) = dimH0, Lemma 2.3 implies that

ind− P = κ + dimH0.(2.5)

Lemma 2.3 also enables us to determine (Lq)
◦.

Lemma 2.4. The isotropic part (Lq)
◦ of Lq coincides with H1.

Proof.Clearly H1 ∩ Lq ⊆ (Lq)
◦. The reverse inclusion also holds: Since P is the

orthogonal projection onto the regular subspace (H0+̇H1)
⊥ we have

(Lq)
◦ ⊆ ker

(

P |
Lq

)

⊆ R
(

(I − P )|
Lq

)

⊆ H1.

It remains to show that H1 ⊆ Lq. Assume on the contrary that H1 ∩ Lq ( H1. Then
there exists an element h ∈ H0, h 6= 0, such that h ⊥ (H1 ∩ Lq) = L◦

q . Hence, the
functional

[aez, h] = (q(z)a, h) = Fh(aez), a ∈ Cn, z ∈ ̺(q)

induces a well-defined continuous functional on Lq/(Lq)
◦ = Pq. This is easily seen by

decomposing h with respect to the decomposition (compare [IKL])

P = (Lq)n[+̇]
(

(Lq)
◦+̇Lq

1
)

[+̇](Lq)r

of P , where (Lq)
◦ and Lq

1
are skewly linked, and where (Lq)n is nondegenerated and

satisfies (Lq)n[+̇](Lq)
◦ = Lq. We find h ∈ G, which contradicts h ∈ H0. 2

Note that Lemma 2.4 implies that P maps Lq into itself, hence P can be decomposed
as

P = PLq[+̇](H1
︸ ︷︷ ︸

=Lq

+̇H0).(2.6)

Let a ∈ G. Since Pq
∼= Lq/(Lq)

◦ ∼= PLq we can consider u(a) as an element of PLq.
Denote by Γ the linear mapping of Cn into P defined by

Γa =

{
u(a) , a ∈ G

a , a ∈ H0
.

Due to the definition of the inner product Γ has the property

[aez, Γb] = (q(z)a, b), a, b ∈ Cn, z ∈ ̺(q).(2.7)
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Definition 2.5. Let A ⊆ P2 be the closure of the relation

S = 〈(0; h1), (aez; Γa + zaez)|h1 ∈ H1, a ∈ Cn, z ∈ ̺(q)〉.

Note that D (A) = Lq. If G 6= Cn, A is a proper relation and A(0) is degenerated.

Proposition 2.6. The relation A is selfadjoint and satisfies ̺(A) ⊇ ̺(q). More-
over, we have q(z) = Γ∗(A − z)−1Γ, i.e.

(q(z)a, b) = [(A − z)−1Γa, Γb], a, b ∈ Cn, z ∈ ̺(q).

Proof.We start with showing that S is symmetric. Since H1 ⊥ Lq we need not
consider the pairs (0; h1). For z 6= w we have

[aez, Γb + wbew] − [Γa + zaez, bew] = [aez, Γb] − [Γa, bew]+

+(w − z)[aez, bew] = (q(z)a, b) − (q(w)a, b)+

+(w − z)

(
q(z) − q(w)

z − w
a, b

)

= 0.

If z = w
[aez, Γb + zbez] − [Γa + zaez, bez] = [aez, Γb] − [Γa, bez] =

= (q(z)a, b) − (a, q(z)b) = 0.

Let z ∈ ̺(q), then

(
aez − aew

z − w
; aew) ∈ S − z, w ∈ ̺(q), w 6= z,

(hez; h) ∈ S − z, h ∈ H0,

(0; h) ∈ S − z, h ∈ H1.

Since, for w0 ∈ ̺(q)
lim

w→w0

aew = aew0
,

in the norm of P , we find that R (S − z) is dense in P for z ∈ ̺(q). It is proved in
[DS] that then A is a selfadjoint relation, and

̺(A) ⊇ ̺(q).

Since (aez ; Γa) ∈ A − z, we find due to (2.7)

[(A − z)−1Γa, Γb] = [aez, Γb] = (q(z)a, b), z ∈ ̺(q).

2

In order to make R (Γ) a neutral subspace, we possibly have to enlarge the space P.
Let

κm = κ + dimH0 + ind+ G = κ + n − ind− G − ind0 G,(2.8)
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where the index of G has to be understood with respect to the inner product [., .]G .

Proposition 2.7. There exists a Pontryagin space P1 with ind− P1 = κm, a
selfadjoint relation A1 ⊆ P2

1 with ̺(A1) ⊇ ̺(q), and a mapping Γ1 of Cn onto a
neutral subspace of P1, such that

q(z) = Γ∗
1(A1 − z)−1Γ1, z ∈ ̺(q).

Proof.Let G be decomposed as G = G+[+̇]G−[+̇]G◦, where G+ (G−) is a maximal
positive (negative) subspace of G. Let G′

± be isomorphic copies of G±, endowed with
the inner product [., .]G′

±
= −[., .]G±

and define P1 as

P1 = P[+̇]G′
+[+̇]G′

−.(2.9)

Clearly ind− P1 = κm. Denote by P1 : G → G′
++̇G′

− the projection of G onto G++̇G−

with kernel G◦, where the image of an element is considered as an element of G′
++̇G′

−.
For a ∈ G define Γ1 as

Γ1a = Γa + P1a,

for a ∈ H0 let Γ1a = Γa = a. We have for a ∈ G, b ∈ H0

[Γ1a, Γ1b] = [PΓa, b] + [P1a, b] = 0,

and, due to Lemma 2.3, for a, b ∈ G

[Γ1a, Γ1b] = [PΓa, PΓb] + [P1a, P1b] = [Γa, Γb] − [a, b]G = 0.

Since H0 is neutral, R (Γ1) is a neutral subspace of P1.
Define a relation

A1 = A + 〈(0; a′)|a′ ∈ G′
±〉 ⊆ P2

1.

It is easy to see that A1 is a selfadjoint relation, ̺(A1) ⊇ ̺(A) ⊇ ̺(q), and that
(A1 − z)−1(G′

±) = 0, z ∈ ̺(A1). By Proposition 2.6 we obtain the desired result. 2

Note that G′
+ + G′

− + H0 ⊆ Lq + R (Γ1). Hence, the relation A1 is Γ1-minimal in
the sense that

P1 = 〈R (Γ1) , (A1 − z)−1R (Γ1) |a ∈ Cn, z ∈ ̺(A1)〉.

Let q ∈ Nn×n
κ have the representation

q(z) = Γ∗
2(A2 − z)−1Γ2, z ∈ ̺(q),(2.10)

with a selfadjoint relation A2 acting in a Pontryagin space P2, where R (Γ2) is neutral.
We want to show that ind− P2 ≥ κm.

We may assume without loss of generality that the relation A2 is Γ2-minimal, i.e.
that

〈R (Γ2) , (A2 − z)−1R (Γ2) |z ∈ ̺(A2)〉 = P2.

Otherwise we could consider the Γ2-minimal part of A2: If we restrict the relation A2

to
M = 〈R (Γ2) , (A2 − z)−1R (Γ2) |z ∈ ̺(A2)〉,
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and factorize with respect to the isotropic part M◦, we obtain a selfadjoint relation AM

with ̺(AM) ⊇ ̺(A). Clearly, AM also represents q, is Γ2-minimal and ind− M/M◦ ≤
ind− P2.

Define a linear mapping U : Lq + R (Γ1) → P2 by (a ∈ Cn, z ∈ ̺(q))

U :

{
aez 7→ (A2 − z)−1Γ2a
Γ1a 7→ Γ2a

.

Using (2.7) and the fact that R (Γ2) is neutral, it is checked by a straightforward
computation that U is isometric. The domain of U is dense in P1, and the range of
U is, due to our assumption that A2 is Γ2-minimal, dense in P2. Hence (see [IKL]) U
extends to a unitary operator Ũ from P1 onto P2. A short calculation shows that

Ũ ◦ A1 = A2 and Ũ ◦ Γ1 = Γ2,

i.e. the representation (2.10) is unitarily equivalent to the representation constructed
in Proposition 2.7.

Theorem 2.8. Let q(z) ∈ N n×n
κ , let κm be as in (2.8) and let κ′ ∈ N∪ {0}. Then

q admits a representation

q(z) = Γ∗(A − z)−1Γ, z ∈ ̺(q),(2.11)

with a selfadjoint relation A acting in a Pontryagin space P with ind− P = κ′, and
with a mapping Γ : Cn → P where R (Γ) is a neutral subspace of P, if and only if
κ′ ≥ κm.

If A is Γ-minimal we have ind− P = κm. Each two Γ-minimal representations are
unitarily equivalent.

Proof.Proposition 2.6 shows that there exists a representation (2.11) where ind− P =
κm. If we extend P by a purely negative subspace, which is taken into the relational
part of the representing relation, we obtain representations (2.11) with ind− P > κm.
The remaining assertions follow from the preceeding considerations. 2

Remark 2.9. Every function q ∈ Nn×n
κ has a representation (2.11) where ind− P =

κ + n.

Remark 2.10. Let q ∈ Nn×n
κ have the representation (2.11) with a Γ-minimal

relation A. Then the part at infinity A(0) of A is in general degenerated. More
precisely

ind0 A(0) = n − dimG.

For a function q ∈ Nn×n
κ′ let Gq be the corresponding inner product space defined in

(2.1). By reversing the formulation of Theorem 2.8 we obtain the following corollary.

Corollary 2.11. Let κ ∈ N ∪ {0} and n ∈ N be given. The set of all n× n-matrix
valued functions which admit a representation (2.11) where ind− P = κ, is

κ⋃

κ′=0

{q ∈ N n×n
κ′ |ind− Gq + ind0 Gq ≥ n + κ′ − κ}.
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3. Characterizations of the number κm

In this section we determine κm in different ways. First via a kind of kernel condition
on the function q, then via analytic properties of q where a certain additional condition
on q is imposed, or where q is a scalar function.

Denote by {d1, . . . , dn} a basis of Cn.

Proposition 3.1. Let q ∈ Nn×n
κ . The number κm is the maximal number of

negative squares a quadratic form (m ∈ N, z1, . . . , zm ∈ ̺(q), a1, . . . , am ∈ Cn)

Q(ξ1, . . . , ξm; ζ1, . . . , ζn) =

m∑

i,j=1

(Nq(zi, zj)ai, aj)ξiξj +

m∑

i=1

n∑

l=1

Re
(
(q(zi)ai, dl)ξiζl

)
(3.1)

attains.
This follows from the fact that in Proposition 2.7

Lq + R (Γ1) = P1,

and that for m ∈ N, z1, . . . , zm ∈ ̺(q), a, a1, . . . , am ∈ Cn the relation

[

m∑

i=1

aiezi
+ Γ1a,

m∑

j=1

ajezj
+ Γ1a] =

m∑

i,j=1

(Nq(zi, zj)ai, aj) +

m∑

i=1

2 Re (q(zi)ai, a)

holds.
Denote by G0,n×n

κ the set of all n × n-matrix valued functions q, meromorphic in
C \ R, such that the maximal number of negative squares of forms (3.1) equals κ.
Proposition 3.1 has the following corollary:

Corollary 3.2. We have q ∈ G0,n×n
κ if and only if q(z) has a representation (1.2)

where R (Γ) is neutral, A acts in a Pontryagin space with negative index κ and is
Γ-minimal.

In [KL2] and [KL1] there is made an additional assumptions on the function q(z),
which is equivalent to the fact that the selfadjoint relation Aq in (1.1) is an operator.
To be more precise, it is assumed that

w-lim
y→+∞

q(iy)

y
= 0.(3.2)

Throughout the next part of this section we shall also assume that (3.2) holds. We
will prove the following

Proposition 3.3. Assume that q ∈ Nn×n
κ satisfies (3.2). Then h ∈ G if and only

if

(i) limy→+∞ q(iy)h = 0,

(ii) limy→+∞ y( Im q(iy)h, h) exists.
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In this case the inner product [., .]G is given by

[a, b]G = lim
y→+∞

y( Im q(iy)a, b), a, b ∈ G.(3.3)

The proof of Proposition 3.3 is split into several lemmata.

Lemma 3.4. Assume that h ∈ Cn satisfies (i) and (ii). Then the limit

lim
y→+∞

yheiy(3.4)

exists in the norm of Pq.

Proof.We compute

[yheiy − y′heiy′ , aez] = y

(
q(iy) − q(z)

iy − z
h, a

)

− y′

(
q(iy′) − q(z)

iy′ − z
h, a

)

=

=

(
y′

iy′ − z
−

y

iy − z

)

(q(z)h, a) +
y

iy − z
(q(iy)h, a) −

y′

iy′ − z
(q(iy′)h, a).(3.5)

Each term on the right hand side of (3.5) tends to zero if y and y′ tend to infinity.
Moreover

[yheiy − y′heiy′ , yheiy − y′heiy′ ] = y2(
1

y
Im q(iy)h, h)+

+y′2(
1

y′
Im q(iy′)h, h) − yy′(

q(iy) − q(iy′)

iy + iy′
h, h) − y′y(

q(iy′) − q(iy)

iy′ + iy
h, h) =

=
y − y′

y + y′
[y( Im q(iy)h, h) − y′( Im q(iy′)h, h)] .(3.6)

The right hand side of (3.6) tends to zero if y and y′ tend to infinity. Hence (see [IKL])
the limit (3.4) exists. 2

Lemma 3.5. Assume that h ∈ Cn satisfies (i) and (ii). Then h ∈ G and

u(h) = −i lim
y→+∞

yheiy.

Proof.Let u = −i lim
y→+∞

yheiy. We have

[aez, u + iyheiy] = [aez, u] − iy(
q(z) − q(iy)

z − iy
a, h) =

=

(

[aez, u] −
iy

z + iy
(q(z)a, h)

)

+
iy

z + iy
(a, q(iy)h).(3.7)

Since the left hand side and the second term on the right hand side of (3.7) tend to
zero, [aez, u] = (q(z)a, h). 2

Lemma 3.6. Assume that h ∈ G. Then h satisfies (i) and (ii). Moreover, the
relation (3.3) holds.
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Proof.As in Lemma 2.1 we find

(Aq − z)−1u(h) = hez.

Due to our assumption (3.2), Aq is an operator. Hence,

−i lim
y→+∞

yheiy = lim
y→+∞

(−iy)(Aq − iy)−1u(h) = u(h).(3.8)

The relation (3.7) shows that

lim
y→+∞

(q(iy)h, a) = 0,

hence (i) holds. Let h, h′ ∈ G, then

[u(h) + iyheiy, u(h′) + iyh′eiy ] = [u(h), u(h′)] + iy([heiy, u(h′)] − [u(h), h′eiy])+

+y2[heiy, h′eiy] = [u(h), u(h′)] − y( Im q(iy)h, h′).(3.9)

Since the left hand side of (3.9) tends to zero, we find that the relation (3.3) holds. In
particular h satisfies (ii). 2

All assertions of Proposition 3.3 are proved.

Remark 3.7. The condition (3.2) has been used only in Lemma 3.6 to show that
−i limy→+∞ yheiy = u(h). Hence, also if q does not satisfy (3.2), the set of all elements
h ∈ Cn which satisfy (i) and (ii), endowed with the inner product (3.3), is a subspace
of G.

Denote by P the (with respect to the usual inner product) orthogonal projection of
Cn onto G.

Remark 3.8. Since (q(z)a, b) = [(Aq − z)−1u(a), u(b)] for a, b ∈ G and q satisfies
(3.2), we find that lim

y→+∞
yPq(iy)P exists, and that (beside (3.3))

[a, b]G = −i lim
y→+∞

y(q(iy)a, b), a, b ∈ G

holds.

In the last part of this section we assume that q is a scalar function, i.e. n = 1.
Then κm = κ or κm = κ + 1. The space G is either {0} or C, in the second case it is
either positive, negative or neutral. We have κm = κ if and only if G equals C and is
nonpositive, whereas in the remaining cases κm = κ + 1. Note that, if G = C, Lemma
2.1 shows that Aq is an operator, hence in this case the limit relation (3.8) holds. Due
to these facts we have

Proposition 3.9. Let q ∈ N κ, then q admits a representation as a u-resolvent

q(z) = [(A − z)−1u, u], z ∈ ̺(q),
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with a neutral element u and a u-minimal selfadjoint relation A ⊆ P2, where ind− P =
κ or ind− P = κ + 1. The first case occurs if and only if

0 ≤ i lim
y→+∞

yq(iy) < ∞.(3.10)

Proof.Assume that G = C and is nonpositive. Lemma 2.1 shows that Aq is an
operator, hence the results of the preceeding part of the present section are applicable.
Remark 3.8 shows that (3.10) holds.

Conversely let (3.10) be valid, then in particular limy→∞
1
y
q(iy) = 0. Again the

results of the preceeding part of this section apply, and we find that G is nonpositive.
2

4. Some classes of Nevanlinna functions

We study the following classes of generalized Nevanlinna functions.

Definition 4.1. Let Gn
κ (κ, n ∈ N ∪ {0}) be the set of all scalar functions q 6= 0,

meromorphic in C \ R which satisfy q(z) = q(z) on their domain of holomorphy ̺(q),
and are such that the maximal number of negative squares of the quadratic forms
(m ∈ N, z1, . . . , zm ∈ ̺(q))

Q(ξ1, . . . , ξm; η1, . . . , ηn) =

m∑

i,j=1

Nq(zi, zj)ξiξj +

n∑

k=0

m∑

i=1

Re (zk
i q(zi)ξiηk)(4.1)

is κ.
By Proposition 3.1 of Section 3. the class G0

κ is the set of all functions q, such that
κm(q) = κ. Note that each function q of Gn

κ is contained in some Nevanlinna class
N κ′ with κ′ ≤ κ.

Denote by S0 the shift operator in Cn+1, i.e. let Cn+1 = 〈h0, . . . , hn〉 and let S0 be
defined by

S0hi = hi+1, i = 0, . . . , n − 1.

Let H be the (neutral) inner product space H = 〈Cn+1, [., .]〉 with [x, y] = 0. The aim
of this section is to prove the following theorem.

Theorem 4.2. The function q is an element of Gn
κ if and only if there exist a

Pontryagin space P and a selfadjoint relation A ⊆ P2, such that ind− P = κ, P ⊇ H,
A ⊇ S0, ̺(A) 6= ∅, A is H-minimal in the sense that

P = 〈H, (A − z)−1H|z ∈ ̺(A)〉,(4.2)

and q has the representation

q(z) = [(A − z)−1h0, h0], z ∈ ̺(q).(4.3)

Here S0 and h0 are as introduced above.
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This result generalizes Corollary 3.2 in case of a scalar function.

Remark 4.3. Note that S0 could be replaced by any operator S′
0 in H, such that

dimD (S′
0) = n which has no eigenvalue, since each such operator is (algebraically)

equivalent to the shift operator.
Before we prove Theorem 4.2, we state another lemma.

Lemma 4.4. Let the inner product (., .) on H be defined by

(hi, hj) = δij , i, j = 0, . . . , n,

and, for z ∈ C, denote by χ(z) the element

χ(z) = znhn + zn−1hn−1 + . . . + h0.

Then R (S0 − z)(⊥) = 〈χ(z)〉. Moreover, each element h of H can be decomposed as

h = h′(z) + (h, χ(z))h0,(4.4)

where h′(z) ∈ R (S0 − z).

Proof.Since
R (S0 − z) = 〈hi+1 − zhi|i = 0, . . . , n − 1〉,

and (h0, χ(z)) = 1, the assertion follows. 2

Proof.(of Theorem 4.2) Assume first that q has the representation (4.3). Note
that

〈H, (A − z)−1h0|z ∈ ̺(A)〉 = 〈H, (A − z)−1H|z ∈ ̺(A)〉 = P .

Hence, the maximal number of negative squares of quadratic forms (m ∈ N, z1, . . . , zm ∈
̺(q))

[

n∑

k=0

ηkhk +

m∑

i=1

ξi(A − zi)
−1h0,

n∑

k=0

ηkhk +

m∑

j=1

ξj(A − zj)
−1h0](4.5)

equals κ. Since A extends S0 we have

(A − z)−1R (S0 − z) = D (S0) ⊆ H.

Hence, as H is neutral, we have according to (4.4)

[(A − z)−1h0, hk] = [(A − z)−1h0, h
′
k(z) + [hk, χ(z)]h0] =

= [χ(z), hk][(A − z)−1h0, h0] = zkq(z).(4.6)

Using the resolvent identity and (4.6), the form (4.5) can be written as

[

n∑

k=0

ηkhk +

m∑

i=1

ξi(A − zi)
−1h0,

n∑

k=0

ηkhk +

m∑

j=1

ξj(A − zj)
−1h0] =
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=

m∑

i,j=1

Nq(zi, zj)ξiξj +

n∑

k=0





m∑

i=1

zk
i q(zi)ξiηk +

m∑

j=1

zk
j q(zj)ξjηk



 =

=
m∑

i,j=1

Nq(zi, zj)ξiξj +
n∑

k=0

m∑

i=1

Re
(

zk
i q(zi)ξi(2ηk)

)

.

Replacing 2ηk by ηk we obtain that the maximal number of negative squares of the
forms (4.1) equals κ.

Conversely let q ∈ Gn
κ be given. Consider the inner product space

L = 〈H, ez|z ∈ ̺(q)〉

endowed with the inner product defined by

[ez, ew] = Nq(z, w), z, w ∈ ̺(q),

[ez, hi] = ziq(z), z ∈ ̺(q), i = 0, . . . , n,

[hi, hj ] = 0, i, j = 0, . . . , n.

Let S ⊆ L2 be the linear relation

S = 〈S0, (ez; h0 + zez)|z ∈ ̺(q)〉.

Consider the Pontryagin space P obtained from L by factorization with respect to its
isotropic part and completion, and the relation A = S/L◦ ⊆ P2. The fact that q ∈ Gn

κ

implies that ind− P = κ. Since

[ez,

n∑

i=0

λihi] = q(z)

n∑

i=0

λiz
i,

we find H ∩ L◦ = {0} as long as q does not vanish identically. Hence P ⊇ H and
A ⊇ S0. By the same reasoning as in Proposition 2.6 the relation A is selfadjoint,
̺(A) ⊇ ̺(q), and

q(z) = [(A − z)−1h0, h0], z ∈ ̺(q).

Clearly A is minimal in the sense of (4.2). 2

The classes Gn
κ are related to the Nevanlinna classes N κ by

Corollary 4.5. Let κ, n ∈ N ∪ {0}, then

N κ ⊆ Gn
κ ∪ . . . ∪ Gn

κ+n+1,

and
Gn

κ ⊆ Nmax(0,κ−n−1) ∪ . . . ∪ N κ.

Proof.Consider the hermitian matrix corresponding to a quadratic form (4.1). This
matrix is obtained by adding n + 1 rows and columns to the matrix

(Nq(zi, zj))
m
i,j=1.
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Hence the number of negative eigenvalues increases by at most n + 1. 2

Corollary 4.6. Let κ, n ∈ N ∪ {0}. For n ≥ κ we have Gn
κ = ∅. If n < κ the class

Gn
κ contains infinitely many elements. In fact,

⋂κ−1
n=0 G

n
κ 6= ∅.

Proof.The first assertion follows immediately from Theorem 4.2.
If q ∈ Gn

κ and λ ∈ R, λ > 0, also λq ∈ Gn
κ. In order to show that Gn

κ contains
infinitely many elements, it thus suffices to show Gn

κ 6= ∅.
Let H and H′ be neutral κ-dimensional spaces and put

P = H+̇H′,

where H and H′ are skewly linked. Let {h0, . . . , hκ−1} and {h′
0, . . . , h

′
κ−1} be skewly

linked bases of H and H′, respectively, i.e. let

[hi, h
′
j ] = δij , i, j = 1, . . . , κ − 1.

Consider the relation

A = 〈(hj ; hj+1), (h
′
j+1; h

′
j), (hκ−1; h

′
κ−1), (h

′
0; h0)|j = 0, . . . , κ − 2〉.

It is easily checked that A is a selfadjoint operator in P . Its resolvent set is nonempty.
Moreover, A has no nontrivial invariant subspace which contains h0.

Now let κ ≥ 1 be given and let n < κ. Denote by S0 the shift operator in Cn+1. We
consider Cn+1 as the subspace 〈h0, . . . , hn〉 of P , and S0 as the operator

S0 = 〈(hj ; hj+1)|j = 0, . . . , n − 1〉.

Then, clearly, S0 ⊆ A. The space

〈hj , (A − z)−1hj |j = 0, . . . , n〉

is an invariant subspace for each resolvent (A−z)−1 and hence for A. Since it contains
h0, it must equal P . By Theorem 4.2 the function

q(z) = [(A − z)−1h0, h0] =
1

1 − z2κ

is contained in Gn
κ. 2
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