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Let H be an n-dimensional space, which is equipped with a positive semidefinite inner

product with a one-dimensional isotropic part. Consider a symmetric operator S in H

with defect index (1, 1). We give a parametrization of the family of S̆traus relations

extending S and acting in a Pontryagin space Pc ⊇ H of dimension n+1 and of negative

index 1, and a parametrization of the corresponding set of u-resolvents of S. These

results are applied to a classical Nevanlinna-Pick interpolation problem for which the

Pick matrix is positive semidefinite but singular: We obtain explicit formulas for the

solutions of this interpolation problem belonging to the class N1 (see Section 4).

1. Introduction

In various extension, interpolation or moment problems the following question
arises: Given a symmetric operator S in an inner product space H and an ele-
ment u ∈ H. Describe the so-called u-resolvents of S, i.e. find a formula which
parametrizes the family of expressions of the form [(A − z)−1u, u], where A runs
through the selfadjoint extensions of S in Pontryagin spaces P extending H.

If S is a densely defined operator with defect (1, 1) and H is a Pontryagin space,
such a description was given e.g. in [6]. There the so-called resolvent matrix was
introduced and studied. This matrix defines a fractional linear transformation
which parametrizes the family of u-resolvents.

In [7] these results were applied to an extension problem for positive definite
functions with an accelerant. There a description of all the extensions is given
under the assumption that the endpoint of the original interval is not singular. If
the endpoint is singular, the results of [6] cannot be applied, as the inner product
on the original space H is degenerated. It is this situation which is considered
here for the particular case that the space H is finite dimensional. That is, in this
note we consider the case that H is a positive semidefinite, finite dimensional inner
product space and we assume that dimH◦ = 1, H◦ = 〈h◦〉, where H◦ denotes the
isotropic part of H: H◦ = H ∩ H⊥. Let S be a symmetric operator defined on
a hyperplane D(S) of H, dimD(S) = dimH − 1, and assume that h◦ is not an
eigenvector of S. Let u ∈ H and let A run through the selfadjoint extensions of
S acting in a Pontryagin space P with negative index 1 (a π1-space) extending
H. As in the classical case we obtain a description of the family of u-resolvents of
S by means of a fractional linear transformation involving a parameter function.
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However, the family of parameters occurring here is more complicated than in the
classical case.

The present paper is divided into two parts. In the first part, consisting of
Sections 2 and 3, a solution of the problem described above is given. The second
part, Sections 4 and 5, deals with an application of the derived formulas to an
interpolation problem of Nevanlinna-Pick type.

Here is a short summary of the contents of the sections. In Section 2 the S̆traus
extension associated with a selfadjoint extension of S is considered. In this way we
reduce the problem of the description of the u-resolvents to a finite dimensional
problem. In Section 3 we give a formula for the family of all u-resolvents. There
it is convenient to distinguish between the cases if D(S) is degenerated or not. In
Section 4 we formulate a Nevanlinna-Pick type interpolation problem, recall some
results of [11] and discuss the unique positive definite (in some sense minimal)
solution. Finally, in Section 5, explicit interpolation formulas are derived.

The notation used in this article is similar to that of [3] and [4].

2. S̆traus extensions

Let (H, [ · , · ]) be a finite dimensional inner product space. Assume that [ · , · ]
is positive semidefinite and that dimH◦ = 1, say H◦ = 〈h◦〉; here 〈 · 〉 denotes
the linear span of the elements between the brackets. If H0 is a nondegenerated
hyperplane of H then H = H0[+̇]〈h◦〉; here +̇ denotes the direct sum and [+̇]
denotes the [ · , · ]-orthogonal and direct sum. Further, let h1 be a formal element,
h1 6∈ H.

Definition 2.1. Let H0 be a nondegenerated hyperplane of H. The vector space

Pc = H0[+̇](〈h◦〉+̇〈h1〉)(2.1)

endowed with the inner product

[x, y] = [x0, y0] + ξ0η1 + ξ1η0,(2.2)

where x = x0 + ξ0h
◦ + ξ1h

1, y = y0 + η0h
◦ + η1h

1, x0, y0 ∈ H0, ξ0, ξ1, η0, η1 ∈ C,
is called a canonical extension of H.

Note that, as a vector space, Pc is isomorphic to H+̇C. Any nondegenerated
hyperplane H0 is isometrically isomorphic to H/H◦, thus Pc is unique up to
isometric isomorphisms.

Proposition 2.2. Let P be a π1-space extending H and let Pc be a canonical
extension of H. Then there is an isometric embedding of Pc into P.

Proof. As H0 is a nondegenerated closed subspace of P it has an orthogonal
complement in P: H0[+̇]H⊥

0 = P . The space H⊥
0 is itself a Pontryagin space and
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contains h◦. Thus we can find an element h ∈ H⊥
0 which is skewly linked with h◦.

Due to the definition (2.2) of the inner product of Pc, the mapping which acts as
the identity on H and maps h1 onto h is an isometric embedding of Pc into P . 2

Fixing such an embedding in the following, we can assume that Pc ⊆ P . Evi-
dently, the orthogonal complement of Pc in P is a Hilbert space.

Let S be a symmetric operator in H, defined on a hyperplane D(S) ⊆ H,
dimD(S) = dimH − 1. If A is a selfadjoint relation extending S with ρ(A) 6= ∅
acting in a π1-space P ⊇ H and Pc is a canonical extension of H, Pc ⊆ P , then
A is also an extension of S considered in Pc. Evidently, dimPc/D(S) = 2.

Denote the orthogonal projection of P onto Pc by Pc. The operator function

R(z) = Pc(A − z)−1|Pc
, z ∈ ρ(A),

is called a generalized resolvent of S, the function

T (z) = R(z)−1 + z, z ∈ ρ(A)(2.3)

is called the S̆traus extension of S associated with A. Observe that the values of
the S̆traus extension are in general linear relations in Pc.

We have to adapt some results of [2] to the situation considered here. First let us
recall some notation. If P1 and P2 are Pontryagin spaces we denote by S0(P1,P2)
the set of all meromorphic functions

ϑ : D = {z ∈ C : |z| < 1} → L(P1,P2),

such that the matrix kernel

Sϑ(z, w) =

(
I−ϑ(w)+ϑ(z)

1−zw

ϑ(z)+−ϑ(w)+

z−w
ϑ(z)−ϑ(w)

z−w

I−ϑ(w)ϑ(z)+

1−zw

)

, |z|, |w| < 1,

is positive semidefinite. For a Pontryagin space P we call a linear subspace of P2

a linear relation. Let N r
0(P) denote the set of all functions T in C

+ with values
in the set of linear relations in P and such that:

(i) for zi ∈ C
+ and (fi; gi) ∈ T (zi), i = 1, . . . , n, the matrix

(
[gi, fj] − [fi, gj]

zi − zj

)n

i=1

is positive semidefinite,

(ii) there exists a z0 ∈ C
+ and a neighbourhood U(z0) ⊆ C

+ of z0, such that for
z ∈ U(z0) the Cayley transform

Cz0
(T (z)) = {(g − z0f ; g − z0f) : (f ; g) ∈ T (z)}

is a bounded operator in P and depends holomorphically on z.
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If, in particular, T (z) is a matrix function T (z) : C
+ → C

n×n such that the
Nevanlinna kernel

NT (z, w) =
T (z) − T (w)∗

z − w

is positive semidefinite, we write T ∈ N 0(C
n).

If P1 and P2 have the same negative index, which is the case in the following
considerations, it is proved in [3] (compare also [2]) that a function ϑ ∈ S0(P1,P2)
is uniquely determined by its values on any nonempty open subset of D, and if it
is extended to C \ ∂D by

ϑ(
1

z
) = ϑ(z)+

the kernel Sϑ remains positive semidefinite. Furthermore, ϑ is in fact holomorphic.
Similarly, a function T ∈ N r

0(P) is uniquely determined by its values on any open
subset of C

+, and if it is extended to C \ R by

T (z) = T (z)+

the kernel NT remains positive semidefinite.
Let P1 ⊆ P2 be Pontryagin spaces and assume that the extending space P⊥

1 is
positive. Denote by P1 the orthogonal projection of P2 onto P1. If A is a selfad-
joint relation in P2 with ρ(A) 6= ∅ we denote by R(z) the compressed resolvent of
A:

R(z) = P1(A − z)−1|P1
, z ∈ ρ(A),

and by T (z), defined as in (2.3), the S̆traus extension associated with A. Recall
that A is called P1-minimal if

P2 = 〈x, (A − z)−1x : x ∈ P1, z ∈ ρ(A)〉.

Lemma 2.3. Let P1, P2, A and T (z) be as above. Then

T (z)(0) := {x ∈ P1 : (0; x) ∈ T (z)} = A(0) ∩ P1.

Furthermore,
D(T (z)) = (A(0) ∩ P1)

⊥,

where the orthogonal companion on the right hand side is considered in P1.

If P1 is a Hilbert space the proof of this lemma can be found in [3]. It can be
generalized immediately to the situation considered here.

Lemma 2.3 applies to the situation described in the beginning of this section
with P1 = Pc, the π1-space P2 = P and a selfadjoint extension A of S.

For the convenience of the reader we formulate a result which is a particular
case of [2], Theorem 2.1.

Proposition 2.4. Let Pc, P, S and A be as before, and let z0 ∈ ρ(A) \ R

be such that R (S − z0) and R (S − z0) are nondegenerated. Then there exists a
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neighbourhood U(z0) of z0 with ℑ(z)ℑ(z)0 > 0 for z ∈ U(z0), such that the S̆traus
extension T (z) associated with A is of the form

T (z) = S+̇{((I − ϑ(ζ(z)))f, (z0 − z0ϑ(ζ(z)))f) : f ∈ R (S − z0)
⊥},(2.4)

where ζ(z) = z−z0

z−z0
and ϑ ∈ S0(R (S − z0)

⊥
,R (S − z0)

⊥
).

Conversely, if ϑ ∈ S0(R (S − z0)
⊥

,R (S − z0)
⊥

), then there exists a selfadjoint
extension A of S in a π1-space P with z0 ∈ ρ(A) such that its corresponding S̆traus
extension is given by (2.4).

In the situation of Proposition 2.4 the Cayley transform

F (ζ) := Cz0
(T (z(ζ))) = (T (z(ζ)) − z0)(T (z(ζ)) − z0)

−1,

where z(ζ) = z0ζ−z0

ζ−1 , is given by

F (ζ) =

(
Cz0

(S) 0
0 ϑ(ζ)

)

:





R (S − z0)
[+̇]

R (S − z0)
⊥



 −→





R (S − z0)
[+̇]

R (S − z0)
⊥



 .(2.5)

As Pc is finite dimensional, D(T (z)) = D(T (z)) and therefore, according to Lemma
2.3, T (z)(0) as well as D(T (z)) are independent of z. We denote D := D(T (z))
and T∞ := T (z)(0) = ker (F (ζ(z)) − I). The main result of this section is the
following representation of the S̆traus extension.

Theorem 2.5. Let H, S be as above, let P be a π1-space , Pc ⊆ P a canonical
extension of H and let A be a selfadjoint extension of S with ρ(A) 6= ∅. Denote by
T (z), z ∈ ρ(A), the S̆traus extension given by (2.3). Then there exists an operator
valued meromorphic function

T0 : C \ R → L(D,Pc),

such that

(i) there exists a z0 ∈ C
+ with R (T (z0) − z0) + D⊥ = Pc,

(ii) −T0 ∈ N r
0(Pc),

and for z ∈ ρ(A),

(iii) S ⊆ T0(z),

(iv) T0(z) ⊆ T0(z)+,

(v) T (z) = T0(z)+̇(0 × T∞).
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Conversely, if D ⊇ D(S) is a subspace of Pc and T0(z) : C \ R → L(D,Pc) is
meromorphic and satisfies (i)–(v), then there exists a selfadjoint extension A of
S in a π1-space P with ρ(A) 6= ∅ such that its corresponding S̆traus extension is
given by

T (z) = T0(z)+̇(0 ×D⊥).

Proof. Let z0 ∈ ρ(A) ∩ C
+ be such that R (S − z0) and R (S − z0) are nonde-

generated. Then Proposition 2.4 shows that there exists a neighbourhood U(z0)
of z0 such that T (z) and its Cayley transform F (ζ) are given by (2.4) and (2.5),
respectively. We have

D(Cz0
(S)) ∩ ker (F (ζ) − I) = {0}.

Indeed, if x ∈ D(Cz0
(S)) we have F (ζ)x = Cz0

(S)x and thus x ∈ ker (F (ζ) − I)
shows that x ∈ ker (Cz0

(S) − I). As S is an operator (S(0) = {0}) we conclude
that x = 0.
Recall that ker (F (ζ) − I) = T∞. We decompose Pc as

Pc = D1+̇T∞

where D1 is chosen such that D(Cz0
(S)) ⊆ D1. Observing that D = D(T (z)) =

R (F (ζ) − I), the operator F (ζ) − I induces a bijection

G(ζ) = (F (ζ) − I)|D1

from D1 onto D. As F (ζ) depends holomorphically on ζ we find that G(ζ)−1 and
thus also

T0(z) = (z0F (ζ) − z0)G(ζ)−1

depend holomorphically on ζ and on z = z0ζ−z0

ζ−1 , respectively.

The inclusions D(Cz0
(S)) ⊆ D1 and G(ζ) ⊆ F (ζ) − I imply S ⊆ T0(z) ⊆ T (z).

Furthermore, T (z) = T (z)+, which shows that T0(z) ⊆ T0(z)+. From the relation

F (ζ) − I = G(ζ)+̇(T∞ × {0}),

where +̇ has to be understood as the sum of subspaces of P2
c , we find

T (z) = (z0F (ζ) − z0)(F (ζ) − I)−1 = T0(z)+̇({0} × T∞).

It is shown in [3] that the kernels SF (ζ) and N−T have the same number of negative

squares. As ϑ(ζ) ∈ S0(R (S − z0)
⊥ ,R (S − z0)

⊥), obviously Cz0
(T0(z)) depends

holomorphically on z and thus T0(z) ∈ N r
0(Pc). Clearly,

R (T0(z) − z) + D⊥ = D1 + T∞ = Pc.

Conversely, suppose that T0(z) is given. Choose z0 as in (i). Then the relation

dimPc = dimR (T0(z0) − z0) + dim (D⊥/R (T0(z0) − z0) ∩ D⊥)
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≤ dimPc − dimD⊥ + dim (D⊥/R (T0(z0) − z0) ∩ D⊥)

implies that R (T0(z0) − z0) ∩ D⊥ = {0}. Thus, in a sufficiently small neighbour-
hood U(z0) of z0, Cz0

(T0(z)) can be extended to Pc by

F (ζ)x =

{
Cz0

(T0(z))x if x ∈ R (T0(z) − z) ,

x if x ∈ D⊥.

Clearly, F (ζ) = Cz0
(T0(z)+̇({0} × D⊥)) and F (ζ) ∈ S0(Pc,Pc). Thus (as in [3]

for the Hilbert space case) T (z) = T0(z)+̇({0} × D⊥) is the S̆traus extension of
some selfadjoint extension A of S with z0 ∈ ρ(A). 2

Remark 2.6. If T∞ is nondegenerated, Theorem 2.5 can be deduced immediately
from the fact that D[+̇]T∞ = Pc. In the situation considered here it may actually
occur that T∞ is degenerated.

3. The u-resolvents of S

Let H and S be as in Section 2 and fix an element u ∈ H. Let A be any
selfadjoint extension of S in a π1-space P , containing H, and thus containing a
canonical extension Pc. In this section we consider the corresponding u-resolvent
of S:

[(A − z)−1u, u], z ∈ ρ(A),(3.1)

and find a description of all such u-resolvents. Observe that with the S̆traus
extension T (z) corresponding to A the u-resolvent (3.1) can be written as

[(A − z)−1u, u] = [(T (z) − z)−1u, u].

As T (z) = T0(z)+̇(0 × T∞), in order to find (T (z)− z)−1u, it suffices to solve the
equation

(T0(z) − z)x = u + b(3.2)

for x ∈ D and b ∈ T∞.
We consider the cases where D(S) is degenerated or nondegenerated separately.

I. If D(S) is nondegenerated, we use the decomposition

Pc = D(S) [+̇](〈h◦〉+̇〈h1〉)(3.3)

with skewly linked neutral elements h◦, h1 as in (2.1), [h◦, h1] = 1. For x ∈ D(S)
we write

Sx = Sdx + [x, a]h◦,(3.4)

where a ∈ D(S), and decompose u as

u = ud + η0h
◦.(3.5)
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Now let A be a selfadjoint extension of S as above and let T (z) be the correspond-
ing S̆traus extension:

T (z) = T0(z)+̇({0} × T∞).

Note that T∞ ⊆ 〈h◦, h1〉. We shall treat the cases

(i) T∞ = {0},

(ii) dimT∞ = 1, h◦ 6∈ T∞,

(iii) dimT∞ = 1, h◦ ∈ T∞,

(iv) dimT∞ = 2

separately. As the proofs of the respective results in the cases (i)–(iv) are quite
similar we will go into detail only in case (i).

Case (i): Write T0(z) as a block matrix with respect to the decomposition (3.3):

T0(z) =





Sd 0 a
[ · , a] t11(z) t12(z)

0 t21(z) t22(z)



 :









D(S)
+

〈h◦〉
+

〈h1〉









−→









D(S)
+

〈h◦〉
+

〈h1〉









.(3.6)

Here the form of the first row and column of the matrix (3.6) follows from the
properties (iii) and (iv) of Theorem 2.5. Furthermore, (ii) implies that

Φ(z) = −

(
t12(z) t11(z)
t22(z) t21(z)

)

∈ N 0(C
2).

Lemma 3.1. If T∞ = {0} and T0(z) and u are given by (3.6) and (3.5), respec-
tively, we have

[(A − z)−1u, u] = [(Sd − z)−1ud, ud](3.7)

−
(η0 − [(Sd − z)−1ud, a])(η0 − [(Sd − z)−1a, ud])

τ(z) + [(Sd − z)−1a, a]
,

where

τ(z) =
(t11(z) − z)(t22(z) − z)

t21(z)
− t12(z).(3.8)

If t21 = 0 then τ(z) = ∞, i.e.

[(A − z)−1u, u] = [(Sd − z)−1ud, ud].

Conversely, given a function Φ(z) ∈ N 0(C
2), the right hand side of (3.7) defines

a u-resolvent of S if τ 6= −[(Sd − z)−1a, a].
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Proof. In order to compute [(A − z)−1u, u] we will explicitly solve the equation
(A − z)x = u, which, for x = xd + ξ0h

◦ + ξ1h
1, in vector form can be written as





Sd − z 0 a
[ · , a] t11(z) − z t12(z)

0 t21(z) t22(z) − z









xd

ξ0

ξ1



 =





ud

η0

0



 .(3.9)

Consider first the case that t21 6= 0. The third row of (3.9) implies

t21(z)ξ0 + (t22(z) − z)ξ1 = 0,

i.e.

ξ0 = −
t22(z) − z

t21(z)
ξ1.(3.10)

The first row gives (Sd − z)xd + ξ1a = ud, or

xd = (Sd − z)−1ud − ξ1(Sd − z)−1a.

This implies

[xd, a] = [(Sd − z)−1ud, a] − ξ1[(Sd − z)−1a, a].(3.11)

From the second row of (3.9) we obtain [xd, a]+ ξ0(t21(z)− z)+ ξ1t12(z) = η0, and
by substituting the expressions (3.10) and (3.11) into this relation we find

ξ1 =
[(Sd − z)−1ud, a] − η0

τ(z) + [(Sd − z)−1a, a]

and thus

xd = (Sd − z)−1ud +
η0 − [(Sd − z)−1ud, a]

τ(z) + [(Sd − z)−1a, a]
(Sd − z)−1a.

Using these expressions we compute

[(A − z)−1u, u] =









xd

ξ0

ξ1



 ,





ud

η0

0







 = [xd, ud] + ξ1η0

= [(Sd − z)−1ud, ud]

−
(η0 − [(Sd − z)−1ud, a])(η0 − [(Sd − z)−1a, ud])

τ(z) + [(Sd − z)−1a, a]
.

Suppose now that t21(z) ≡ 0. Then, as Φ(z) ∈ N 0(C
2), t11(z) − z 6≡ 0 and

t22(z) − z 6≡ 0. Thus it follows from (3.9) that ξ1 = 0, xd = (Sd − z)−1ud and ζ0

can be computed from the second row of (3.9). We obtain

[(A − z)−1u, u] = [(Sd − z)−1ud, ud].



10 H. Langer and H. Woracek

Consider the converse part of the lemma. It is obvious from the definition (3.6) of
T0(z), that conditions (ii)–(iv) of Theorem 2.5 are satisfied. Note that condition
(i) holds for some z0 if and only if T0(z0) − z0 is injective. Assume that for each
z we have ker (T0(z) − z) 6= {0}, say

0 6=





xd

ξ0

ξ1



 ∈ ker (T0(z) − z) .

If t21 6= 0 we do the same calculations as above (with ud = 0, η0 = 0) up to (3.11),
then the second row of (3.9) yields

ξ1(τ(z) + [(Sd − z)−1a, a]) = 0.

In case ξ1 = 0 we obtain xd = 0 and ξ0 = 0, a contradiction. Consequently,
τ + [(Sd − z)−1a, a] = 0. If t21(z) ≡ 0, again t11(z)− z 6≡ 0 and t22(z)− z 6≡ 0, and
therefore (3.9) (ud = 0, η0 = 0) shows that ξ1 = 0, xd = 0 and ξ0 = 0. 2

Remark 3.2. Note that as a parameter in (3.7) the entries of the matrix Φ(z) do
not appear separately, but only in form of the scalar function τ(z). The same is
true for the representation formulas below.

Case (ii): Let T∞ = 〈b〉 with b = b0h
◦ + h1 ∈ D(S)

⊥
. Then

T0(z) =





Sd a
[ · , a] t1(z)

0 t2(z)



 :





D(S)
+
〈d〉



 −→









D(S)
+

〈h◦〉
+

〈h1〉









,(3.12)

where d = −b0h
◦ + h1. If f = fd + λfd, h = hd + λhd ∈ D(T0(z)), we find









0 0
0 Nt1(z, w)
0 Nt2(z, w)



 f, h



 =









0
Nt1(z, w)λf

Nt2(z, w)λf



 , λh





0

−b0

1









= Nt1−b0t2(z, w)λfλh,

which shows with (ii) of Theorem 2.5 that

ϕ(z) = −(t1(z) − b0t2(z)) ∈ N 0(C).

Lemma 3.3. If dimT∞ = 1 and h◦ 6∈ T∞, we have

[(A − z)−1u, u] = [(Sd − z)−1ud, ud](3.13)

−
(η0 − [(Sd − z)−1ud, a])(η0 − [(Sd − z)−1a, ud])

τ(z) + [(Sd − z)−1a, a]
,
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where

τ(z) = −2ℜ(b0)z + ϕ(z),(3.14)

with ϕ(z) = −(t1(z) − b0t2(z)) ∈ N 0(C). Conversely, given a function ϕ(z) ∈
N 0(C) and b0 ∈ C, the right hand side of (3.13) defines a u-resolvent of S if
τ(z) 6≡ −[(Sd − z)−1a, a].

Proof. We have to solve the equation





Sd − z a

[ · , a] t1 + b0z
0 t2 − z





(
xd

ξ2

)

=





ud

η0

0



+ λ





0
b0

1





for x = xd + ξ2d and λ. This is done by similar computations as in the proof of
Lemma 3.1 and yields (3.13). The converse statement is proved analogously as
well. 2

Case (iii): Let T∞ = 〈h◦〉. Then

T0(z) =





Sd 0
[ · , a] t1(z)

0 t2(z)



 :





D(S)
+

〈h◦〉



 −→









D(S)
+

〈h◦〉
+

〈h1〉









.

Lemma 3.4. If dimT∞ = 1 and h◦ ∈ T∞, we have

[(A − z)−1u, u] = [(Sd − z)−1ud, ud].(3.15)

Conversely, the right hand side of (3.15) defines a u-resolvent of S.

In order to prove the Lemma 3.4, we have to consider the equation





Sd − z 0
[ · , a] t1 − z

0 t2





(
xd

ξ2

)

=





ud

η0

0



+ λ





0
1
0



 .

Case (iv): Let dim T∞ = 2. Then T0(z) = S.

Lemma 3.5. If dimT∞ = 2, the formula (3.15) holds.

In order to prove Lemma 3.5, consider the equation





Sd − z
[ · , a]

0



xd =





ud

η0

0



+ λ





0
1
0



+ µ





0
0
1



 .
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Definition 3.6. Let T n denote the set of all functions of the form

τ(z) =
(t11(z) − z)(t22(z) − z)

t21(z)
− t12(z),

where

Φ(z) = −

(
t12(z) t11(z)
t22(z) t21(z)

)

∈ N 0(C
2),

or τ(z) = −b1z + ϕ(z) where ϕ(z) ∈ N 0(C) and b1 ∈ R, or τ(z) ≡ ∞.

Note that all functions of T n can be obtained as limits of functions of the first
kind, if certain entries of the matrix Φ(z) tend to infinity.

¿From the Lemmas 3.1 to 3.5 we obtain the following result.

Theorem 3.7. Let D(S) be nondegenerated. Then the set of u-resolvents of S is
parametrized by the formula

[(A − z)−1u, u] = [(Sd − z)−1ud, ud]

−
(η0 − [(Sd − z)−1ud, a])(η0 − [(Sd − z)−1a, ud])

τ(z) + [(Sd − z)−1a, a]
,

where τ ∈ T n.

Remark 3.8. The correspondence between u-resolvents and parameters is bijec-
tive, whereas different extensions may yield the same u-resolvent. Consider for
example Lemma 3.1 with t21 = 0.

II. If D(S) is degenerated we have h◦ ∈ D(S). Assume for the moment that
dimH ≥ 3. We choose a decomposition D(S) = D1[+̇]〈h◦〉 of D(S) where D1 is
nondegenerated. Let g ∈ H be such that g ⊥ D(S) and [g, g] = 1. Then we can
choose H0 = 〈g〉[+̇]D1 for the construction of a canonical extension Pc:

Pc = 〈g〉[+̇]D1[+̇](〈h◦〉
︸ ︷︷ ︸

D(S)

+̇〈h1〉)(3.16)

with skewly linked elements h◦, h1. For x = xd + ξ0h
◦ ∈ D(S) let, according to

the decomposition (3.16),

Sx = ([xd, a] + c1ξ0)g + Sdxd + ([xd, b] + c2)h
◦,(3.17)

and

u = η2g + ud + η0h
◦.(3.18)

Recall our assumption that h◦ is not an eigenvector of S, thus c1 6= 0. Similar as
in the preceeding discussion we distinguish the cases
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(i) T∞ = {0},

(ii) dimT∞ = 1, h◦ 6∈ T∞,

(iii) dimT∞ = 1, h◦ ∈ T∞,

(iv) dimT∞ = 2.

Again the details will be carried out only in the first case.
Case (i): T0(z) can be written as a block matrix with respect to the decompo-

sition (3.16) of the space Pc:

T0(z) =







t11(z) [ · , a] c1 t12(z)
a Sd 0 b

t21(z) [ · , b] c2 t22(z)
c1 0 0 c2







:













〈g〉
+
D1

+
〈h◦〉
+

〈h1〉













−→













〈g〉
+
D1

+
〈h◦〉
+

〈h1〉













.(3.19)

The form of the second and third column and the second and fourth row of the
block matrix (3.19) follows from (iii) and (iv) of Theorem 2.5, (ii) implies that

Φ(z) = −

(
t11(z) t12(z)
t21(z) t22(z)

)

∈ N 0(C
2).

Remark 3.9. Note that in this case the operator Sd acts in a space of dimension
dimH − 2, whereas in the case h◦ 6∈ D(S) the operator Sd acts in a space of
dimension dimH− 1.

Lemma 3.10. If dimT∞ = 0 and T0(z) and u are given by (3.19) and (3.18),
respectively, we have

[(A − z)−1u, u] = [(Sd − z)−1ud, ud](3.20)

−
((c2 − z)η2 − c1η0 + [(Sd − z)−1ud, cz])((c2 − z)η2 − c1η0 − [(Sd − z)−1cz, ud])

τ(z) + z(c2 − z)(c2 − z) + [(Sd − z)−1cz , cz]

where cz = c1b − (c2 − z)a and

τ(z) = −t11(z)z2 − 2(c1t21(z) + c1t12(z) − (c2 + c2)t11(z))z(3.21)

−(|c2|
2t11(z) + |c1|

2t22(z) − 2(c1c2t21(z) + c1c2t12(z))).

Conversely, given a function Φ(z) ∈ N 0(C
2), the right hand side of (3.20) defines

a u-resolvent of S if

τ(z) 6≡ −z(c2 − z)(c2 − z) + [(Sd − z)−1cz, cz].(3.22)
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Proof. We have to solve the equation






t11(z) − z [ · , a] c1 t12(z)
a Sd − z 0 b

t21(z) [ · , b] c2 − z t22(z)
c1 0 0 c2 − z













ξ2

xd

ξ0

ξ1







=







η2

ud

η0

0







.(3.23)

The last row of (3.23) implies that

c1ξ2 + (c2 − z)ξ1 = 0.(3.24)

The second row gives ξ2a + (Sd − z)xd + ξ1b = ud, i.e.

xd = (Sd − z)−1ud − ξ2(Sd − z)−1c′z(3.25)

where c′z = c1

c2−z
b − a. We find

[xd, a] = [(Sd − z)−1ud, a] + ξ2[(Sd − z)−1c′z, a],

[xd, b] = [(Sd − z)−1ud, b] + ξ2[(Sd − z)−1c′z, b].

Substituting these expressions into the relation obtained from the first row of
(3.23) we get

ξ2

(

t11(z) − z −
c1

c2 − z
t12(z) + [(Sd − z)−1c′z, a]

)

+ ξ0c1(3.26)

= η2 − [(Sd − z)−1ud, a],

and, substituted into the relation obtained from the third row,

ξ2

(

t21(z) −
c1

c2 − z
t22(z) + [(Sd − z)−1c′z, b]

)

+ ξ0(c2 − z)(3.27)

= η0 − [(Sd − z)−1ud, b].

From the linear system of equations (3.26) and (3.27) we obtain, using Cramer’s
rule and (3.24),

ξ0 =
∆0

∆
, ξ2 = z

∆2

∆
,

where ∆, ∆0 and ∆2 are given by

∆ =

∣
∣
∣
∣
∣

t11(z) − z − c1

c2−z
t12(z) + [(Sd − z)−1cz, a] c1

t21(z) − c1

c2−z
t22(z) + [(Sd − z)−1cz , b] c2 − z

∣
∣
∣
∣
∣
,

∆0 =

∣
∣
∣
∣
∣

t11(z) − z − c1

c2−z
t12(z) + [(Sd − z)−1cz, a] η2 − [(Sd − z)−1ud, a]

t21(z) − c1

c2−z
t22(z) + [(Sd − z)−1cz , b] η0 − [(Sd − z)−1ud, b]

∣
∣
∣
∣
∣
,

∆2 =

∣
∣
∣
∣
∣

η2 − [(Sd − z)−1ud, a] c1

η0 − [(Sd − z)−1ud, b] c2 − z

∣
∣
∣
∣
∣
.
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Finally, we find

ξ1 = −
c1

c2 − z

∆2

∆
,

and by (3.25)

xd = (Sd − z)−1ud +
∆2

∆
(Sd − z)−1c′z.

Using these expressions we compute

[(A − z)−1u, u]

=













ξ2

xd

ξ0

ξ1







,







η2

ud

η0

0













= ξ2η2 + [xd, ud] + ξ1η0

= [(Sd − z)−1ud, ud] +
∆2

∆

(

η2 + [(Sd − z)−1cz, ud] −
c1

c2 − z

)

= [(Sd − z)−1ud, ud]

−
((c2−z)η2−c1η0 + [(Sd − z)−1ud, cz ])((c2−z)η2−c1η0−[(Sd − z)−1cz, ud])

τ(z) + z(c2 − z)(c2 − z) + [(Sd − z)−1cz, cz ]
.

Consider the converse part of the lemma. As ∆ 6= 0 if and only if (3.22) is
satisfied, we find, by similar computations as above, that T0(z) is injective and
thus surjective, i.e. condition (i) of Theorem 2.5 is satisfied. All other conditions
of Theorem 2.5 follow immediately from the construction (3.19) of T0(z). 2

Remark 3.11. Again not all the entries of the matrix Φ(z) occur separately in
(3.20), but only the scalar function τ .

Case (ii): We can write T∞ = 〈b〉 with b = g + b0h
◦, and

T0(z) =







[ · , a] c1 t1(z)

Sd 0 b − b0a
[ · , b] c2 t2(z)

0 0 −b0







:









D1

+
〈h◦〉
+
〈d〉









−→













〈g〉
+

D(S)
+

〈h◦〉
+

〈h1〉













.

Lemma 3.12. If dimT∞ = 1 and h◦ 6∈ T∞, we have

[(A − z)−1u, u] = [(Sd − z)−1ud, ud].(3.28)

Conversely, the right hand side of (3.28) defines a u-resolvent of S.
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In order to prove Lemma 3.12, consider the equation







[ · , a] c1 t1(z) + zb0

Sd − z 0 b − b0a
[ · , b] c2 − z t2(z)

0 0 −b0 − z











xd

ξ0

ξ3



 =







η2

ud

η0

0







+ λ







1
0
b0

0







.

Case (iii): We have

T0(z) =







t1(z) [ · , a] c1

a Sd 0
t2(z) [ · , b] c2

c1 0 0







:









〈g〉
+
D1

+
〈h◦〉









−→













〈g〉
+
D1

+
〈h◦〉
+

〈h1〉













.

Lemma 3.13. If dimT∞ = 1 and h◦ ∈ T∞, the formula (3.28) holds.

In order to prove Lemma 3.13, consider the equation






t1(z) − z [ · , a] c1

a Sd − z 0
t2(z) [ · , b] c2 − z
c1 0 0











ξ2

xd

ξ0



 =







η2

ud

η0

η1







+ λ







0
0
1
0







(3.29)

with η1 = 0. To prove the converse part note that (3.29) remains solvable if η1 ∈ C

is arbitrary, and therefore condition (i) of Theorem 2.5 is satisfied.

Case (iv): In this case T0(z) = S and D⊥ = 〈g, h◦〉. Thus

R (T0(z) − z) + D⊥ ⊆ H 6= Pc

and (i) of Theorem 2.5 cannot be satisfied.

Remark 3.14. Similarly to the case h◦ 6∈ D(S) different extensions may have the
same u-resolvent.

For the sake of completeness we consider the case dimH = 2. Then the compo-
nent D1 in the decomposition (3.16) of Pc does not appear. With similar calcu-
lations as in the preceding lemmata we obtain that the formulas developed above
remain valid if only the terms involving Sd are deleted.

Definition 3.15. Let T d denote the set of all functions τ of the form

τ(z) = −t11(z)z2 − 2(c1t21(z) + c1t12(z) − (c2 + c2)t11(z))z

−(|c2|
2t11(z) + |c1|

2t22(z) − 2(c1c2t21(z) + c1c2t12(z)))
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with c1, c2 given by (3.17), where

Φ(z) = −

(
t11(z) t12(z)
t21(z) t22(z)

)

∈ N 0(C
2),

or τ(z) = ∞.

¿From the above lemmata we obtain the following result.

Theorem 3.16. Let D(S) be degenerated. Then the set of all u-resolvents of S is
parametrized by the formula

[(A − z)−1u, u] = [(Sd − z)−1ud, ud]

−
((c2 − z)η2 − c1η0 + [(Sd − z)−1ud, cz])((c2 − z)η2 − c1η0 + [(Sd − z)−1cz, ud])

τ(z) + z(c2 − z)(c2 − z) + [(Sd − z)−1cz, cz]
,

where τ ∈ T d.

4. The degenerated Nevanlinna-Pick problem

By N κ we denote the class of all complex functions f which are meromorphic
in C

+, and such that the kernel

Nf(z, w) =
f(z) − f(w)

z − w
, z, w ∈ ρ(f),

has exactly κ negative squares. Here ρ(f) denotes the domain of holomorphy of
the function f .

Recall that the classical Nevanlinna-Pick interpolation problem for the upper
half plane can be formulated as follows:

Given n ∈ N, z1, . . . , zn ∈ C
+ and w1, . . . , wn ∈ C

+. Find conditions such that
there exist functions f ∈ N 0 which satisfy

f(zi) = wi, i = 1, . . . , n.(4.1)

It was shown in [9] that such functions exist if and only if the corresponding
so-called Pick matrix

P =

(
wj − wi

zj − zi

)n

i,j=1

is positive semidefinite. In fact the problem has a unique solution f ∈ N 0 if and
only if the Pick matrix P is degenerated, otherwise it has infinitely many solutions,
which can be described e.g. by a fractional linear transformation with a parameter
running through the set N 0.
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Here we consider the following problem: Given n ∈ N, z1, . . . , zn ∈ C
+ and

w1, . . . , wn ∈ C
+, and suppose that the corresponding Pick matrix P is posi-

tive semidefinite and degenerate, having zero as a simple eigenvalue. Hence the
Nevanlinna-Pick interpolation problem has a unique solution f ∈ N 0. Describe
all functions f ∈ N 1 which are holomorphic in z1, . . . , zn and which are such that
(4.1) holds. It was shown in [11] that there exist infinitely many solutions f of this
problem. They correspond to the selfadjoint extensions A of a symmetric operator
S, where S acts in a finite dimensional space H with a positive semidefinite inner
product, having a one dimensional isotropic subspace, and where A is a selfadjoint
extension of S in a π1-space P ⊇ H such that zi ∈ ρ(A) for i = 1, . . . , n.

Recall (see [11]) that H and S can be constructed as follows: H is the linear
space of all formal sums

n∑

i=1

ξiei, ξi ∈ C,

equipped with the inner product given by

[ei, ej] =
wi − wj

zi − zj

, i, j = 1, . . . , n,

and S is the operator in H with domain

D(S) =

{
n∑

i=1

ξiei :
n∑

i=1

ξi = 0

}

which acts as

S

(
n∑

i=1

ξiei

)

=

n∑

i=1

ziξiei for

n∑

i=1

ξiei ∈ D(S) .

By a straightforward calculation it can be shown that S is symmetric and has no
eigenvalues.

The following result is a particular case of Theorem 1 of [11]:

Proposition 4.1. The family of solutions f ∈ N 1 of the interpolation problem
(4.1) corresponds to the family of selfadjoint (relational) extensions A of S in
Pontryagin spaces P ⊇ H with negative index 1 which contain the points z1, . . . , zn

in their resolvent set and are e1-minimal. This correspondence is established by
the formula f = QA with

QA(z) = w1 +
ℑ(w1)

ℑ(z1)
(z − z1) + (z − z1)(z − z1)[(A − z)−1e1, e1](4.2)

and becomes bijective if we do not distinguish between e1-unitarily equivalent ex-
tensions of S.
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There an extension A of S in a Pontryagin space P with z1 ∈ ρ(A) is called
e1-minimal if

〈e1, (A − z)−1e1 : z ∈ ρ(A)〉 = P .

Two extensions A1 and A2 acting in Pontryagin spaces P1 and P2, respectively,
are called e1-unitarily equivalent if there exists a unitary operator U : P1 → P2

with Ue1 = e1, such that UA1 = A2U .
Observe that in the relation (4.2) an e1-resolvent appears. Moreover, the space

H and the operator S satisfy the assumptions of Sections 2 and 3. Hence, in the
results obtained there, we can take u = e1 and decompose this element according
to (3.3) or (3.16):

e1 = ud + η0h
◦ or e1 = η2g + ud + η0h

◦,

respectively, where again 〈h◦〉 = H◦. With

h◦ =

n∑

i=1

χ◦
i ei

it follows that D(S) degenerates if and only if
∑n

i=1 χ◦
i = 0. Let Sd be defined as

in (3.4) or (3.17). Denote in the following by QSd
the function

QSd
(z) = w1 +

ℑ(w1)

ℑ(z1)
(z − z1) + (z − z1)(z − z1)[(Sd − z)−1ud, ud].(4.3)

Then the results of the preceding sections imply:
If
∑n

i=1 χ◦
i 6= 0 the solutions of the interpolation problem (4.1) within N 0 ∪N 1

are given by

f(z) = QSd
(z) − (z − z1)(z − z1)(4.4)

·
(η0 − [(Sd − z)−1ud, a])(η0 − [(Sd − z)−1a, ud])

τ(z) + [(Sd − z)−1a, a]
,

where the parameter τ runs through the set T n. If
∑n

i=1 χ◦
i = 0 and c1, c2 are as

in (3.17), the solutions of (4.1) within N 0 ∪ N 1 are given by

f(z) = QSd
(z) − (z − z1)(z − z1)(4.5)

·
((c2 − z)η2 − c1η0 + [(Sd − z)−1ud, a])((c2 − z)η2 − c1η0 + [(Sd − z)−1a, ud])

τ(z) + z(c2 − z)(c2 − z) + [(Sd − z)−1cz, cz ]
,

where the parameter τ runs through the set T d.
Parameters which correspond to selfadjoint extensions of S which contain some

data points in their spectrum have to be excluded. We will see in Section 5 that
this is the case if and only if the denominator of (4.4) (or (4.5), respectively)
vanishes at a data point.
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In both cases the unique solution f ∈ N 0 of (4.1) corresponds to the parameter
τ(z) ≡ ∞, that is:

Proposition 4.2. The function QSd
in (4.3) is the unique solution of the inter-

polation problem (4.1) in N 0.

Proof. As the operator Sd acts in the positive definite inner product space D(S)
or D1, respectively, we have QSd

∈ N 0 (compare [11]).
As Sd is not an extension of S we cannot apply Proposition 4.1 in order to show
that QSd

is a solution, we actually have to compute the values of QSd
at z1, . . . , zn.

As the points zi are nonreal and Sd is selfadjoint, we have zi ∈ ρ(Sd) for i =
1, . . . , n, and QSd

(z1) = w1. If D(S) is nondegenerated, then for i = 2, . . . , n

ud + η0h
◦ = u = e1 = (S − z)

(
ei − e1

zi − z1

)

= (Sd − z)

(
ei − e1

zi − z1

)

+

[(
ei − e1

zi − z1

)

, a

]

h◦

holds. If D(S) is degenerated we find for i ∈ {2, . . . , n},

η2g + ud + η0h
◦ = u = e1 = (S − z)

(
ei − e1

zi − z1

)

= (Sd − z)

(
ei − e1

zi − z1
− λh◦

)

+

[(
ei − e1

zi − z1
− λh◦

)

, b

]

h◦

+

[(
ei − e1

zi − z1
− λh◦

)

, a

]

g + λc1g + λc2h
◦,

where
(

ei−e1

zi−z1
− λh◦

)

+ λh◦ is the decomposition of ei−e1

zi−z1
with respect to D(S) =

D1[+̇]〈h◦〉.
In the first case we have

(Sd − z)−1ud =
ei − e1

zi − z1
,

whereas in the second case

(Sd − z)−1ud =
ei − e1

zi − z1
− λh◦.

A straightforward computation shows that in both cases the relations QSd
(zi) =

wi, i = 1, . . . , n hold. 2

Remark 4.3. Proposition 4.2 gives another proof of G. Pick’s result, that a
solution of the interpolation problem (4.1) within the class N 0 actually exists.
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Proposition 4.4. The unique solution QSd
of (4.1) in N 0 is holomorphic at ∞

if and only if D(S) is nondegenerated, and it has a simple pole at ∞ if and only
if D(S) is degenerated.

Proof. Let f be the unique solution of (4.1) in N 0. Then f is a rational function
and deg f = n − 1. From [10] we know that f is given by

f(z) =

∑n

i=1 χ◦
i wi

n∏

j=1,j 6=i

(z − zj)

∑n

i=1 χ◦
i

n∏

j=1,j 6=i

(z − zj)
=

p(z)

q(z)
(4.6)

where
∑n

i=1 χ◦
i ei = h◦. As deg f = n − 1 (see [10]) the numerator p(z) and

denominator q(z) in (4.6) are relatively prime.
Suppose that D(S) is nondegenerated, i.e. h◦ 6∈ D(S). Equivalently,

∑n

i=1 χ0
i 6=

0, which implies that deg q = n− 1. As deg f = max(deg p, deg q) = n− 1 we find
that f is analytic at ∞.

If D(S) is degenerated, then Sd acts in a (n − 2)-dimensional space, i.e. it can
be written as an (n − 2) × (n − 2)-matrix. Thus

(Sd − z)−1 =
1

|Sd − z|
AT

where A is the matrix of algebraic complements of Sd−z. The determinant |Sd−z|
is a polynomial of degree n− 2, whereas each entry of A is a polynomial of degree
n − 3. Thus

[(Sd − z)−1ud, ud] =
p1(z)

q1(z)
(4.7)

where deg p1 ≤ n − 3 and q1(z) = |Sd − z|, i.e. deg q1 = n − 2. Substituting (4.7)
into the expression (4.3) for QSd

we find that

QSd
(z) =

p(z)

q1(z)

where deg p ≤ n − 1 and deg q1 = n − 2. As f interpolates we must have deg f =
n − 1 and therefore deg p = n − 1. Thus f has a simple pole at ∞. 2

5. Explicit formulas

I. Assume that h◦ 6∈ D(S). If h◦ =
∑n

i=1 χ◦
i ei, we can assume without loss of

generality that
∑n

i=1 χ◦
i = 1.

We introduce the functions

N1(z) = (η0 − [(Sd − z)−1ud, a])(η0 − [(Sd − z)−1a, ud])
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and
M1(z) = [(Sd − z)−1a, a],

where a, η0 and ud are as in (3.4) and (3.5). As the space H is finite dimensional
and Sd is selfadjoint, N1 and M1 are real rational functions.

Lemma 5.1. Let

S =

(
Sd

[ · , a]

)

: D(S) → H

be the matrix representation of the operator S with respect to the decomposition
H = D(S) [+̇]〈h◦〉. Then a =

∑n

i=1 αiei where the numbers αi are the (unique)
solutions of the system of linear equations

n∑

i=1

αi

(
w1 − wj

z1 − zj

−
w1 − w1

z1 − z1

)

= zj − z1, j = 2, . . . , n,

n∑

i=1

αi = 0.(5.1)

If we put u = e1 = ud + η0h
◦, we have

η0 = 1 and ud = e1 − h◦.

Proof. We have to find a ∈ D(S) such that

Sx = Sdx + [x, a]h◦, x ∈ D(S) .

Let x =
∑n

i=1 ξiei ∈ D(S). Then

Sx =
n∑

i=1

ziξiei =

(
n∑

i=1

ziξiei −

(
n∑

i=1

ziξi

)

h◦

)

+

(
n∑

i=1

ziξi

)

h◦,

i.e. [x, a] =
n∑

i=1

ziξi. Setting x = ej − e1 for j ∈ {2, . . . , n} we obtain [ej − e1, a] =

zj − z1 or

n∑

i=1

αi

(
wj − w1

zj − z1
−

wj − w1

zj − z1

)

= zj − z1, j = 2, . . . , n,

where additionally
∑n

i=1 αi = 0 holds as a ∈ D(S). Due to the fact that D(S) is
nondegenerated this system of linear equations has a unique solution α1, . . . , αn.
As we have assumed that

∑n
i=1 χ◦

i = 1, the decomposition

u = ud + η0h
◦ with ud = e1 − h◦, η0 = 1

holds. 2

Recall that if a rational function is written as a quotient of two polynomials which
are relatively prime, then its degree is defined as the maximum of the degrees of
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the numerator and the denominator. The degree of a rational function equals the
total multiplicity of its poles or its zeros (including ∞).

Proposition 5.2. The rational function N1(z) is of degree 2n − 2, and

lim
z→∞

N1(z) = 1.(5.2)

The zeros of N1(z) are the points z2, . . . , zn and z2, . . . , zn. The poles of N1(z) are
the solutions of the equation

n∑

i=1

χ◦
i

zi − z
= 0,

and they are all real. Therefore

N1(z) =

n∏

i=2

(z − zi)(z − zi)




n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(z − zj)





2 .(5.3)

The function M1(z) is of degree at most n − 1, and

lim
z→∞

zlM1(z) = −
n∑

i=1

zl
iαi 6= 0(5.4)

where l ∈ {1, . . . , n − 1} is such that Sl−1a ∈ D(S) but Sla 6∈ D(S). The zeros of
M1(z) are the solutions of the equation

n∑

i=1

αi

zi − z
= 0.

The poles of M1(z) coincide with the poles of N1(z), the multiplicity of a pole in
M1(z) is half the multiplicity of the corresponding pole of N1(z). Therefore

M1(z) = (−1)n−1

n∑

i=1

αi

n∏

j=1

j 6=i

(z − zj)

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(z − zj)
.

Proof. As Sd acts on D(S) we have (Sd − z)−1 = L(z)
q(z) , where deg q = dimD(S) =

n − 1 and deg L ≤ n − 2. Note that q(z) = |Sd − z| is a real polynomial. Thus

N1(z) =

(

1 −
[L(z)ud, a]

q(z)

)(

1 −
[L(z)a, ud]

q(z)

)

=
q(z)2 − q(z)([L(z)ud, a] + [L(z)a, ud]) + [L(z)ud, a][L(z)a, ud]

q(z)2
.
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As deg q2 = 2n − 2 and the degree of the remaining terms in the numerator is at
most 2n − 3 we find that deg N1 ≤ 2n − 2 and (5.2) holds.
From [11] we know that there exist parameters τ such that the corresponding
function QA interpolates. Thus, as the function QSd

also interpolates, we must
have N1(zi) = 0 for i = 2, . . . , n. As N1 is real it has also the zeros z2, . . . , zn. In
particular, the degree of N1 is in fact equal to 2n − 2.
The poles of N1(z) are obviously the eigenvalues of Sd, and therefore real. A value
z is an eigenvalue of Sd if and only if there exists a vector x =

∑n

i=1 ξiei ∈ D(S),
x 6= 0, such that (Sd − z)x = 0. We find

0 = (Sd − z)x = P (S − z)x = P

(
n∑

i=1

(zi − z)ξiei

)

,

where P denotes the projection onto D(S) with kernel 〈h◦〉. Thus

n∑

i=1

(zi − z)ξiei = µh◦ for some µ ∈ C.

Furthermore, as we can restrict our attention to real values of z, we must have
µ 6= 0. Due to this fact we find that z is an eigenvalue of Sd if and only if there
exist numbers ξi, not all zero, such that

n∑

i=1

(zi − z)ξiei = h◦,
n∑

i=1

ξi = 0.

The first equation has the unique solution (observe that z ∈ R and thus zi−z 6= 0)

ξi =
χ◦

i

zi − z
, i = 1, . . . , n.

Thus z is an eigenvalue of Sd if and only if

n∑

i=1

ξi =

n∑

i=1

χ◦
i

zi − z
= 0.

We have

n∑

i=1

χ◦
i

zi − z
=

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(zj − z)

n∏

i=1

(zi − z)
,

and therefore
∑n

i=1
χ◦

i

zi−z
= 0 if and only if

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(zj − z) = 0.
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Now it is clear that (5.3) holds.
The assertion concerning the poles of M1(z) is obvious. Also the degree of the
numerator of M1(z) is clearly at most n−2, whereas the degree of its denominator
is n − 1 and thus deg M1 ≤ n − 1.
We show that z is a zero of M1(z) if and only if a ∈ R (S − z): Put x(z) =
(Sd − z)−1a. Then

a = (Sd − z)x(z) = (S − z)x(z) − [x(z), a]h◦.

If M1(z) = 0 we have a = (S − z)x(z), i.e. a ∈ R (S − z). Suppose, conversely,
that a ∈ R (S − z), i.e. let a = (S − z)x with some x ∈ D(S). Then

a = (S − z)x = (Sd − z)x + [x, a]h◦.

As D(S) ∩ H◦ = {0} we find [x, a] = 0 and therefore a = (Sd − z)x, i.e. x =
(Sd − z)−1a. We conclude that M1(z) = 0.
In order to determine those values z for which a ∈ R (S − z), consider the equation

(S − z)x = a, x ∈ D(S) .

With x =
∑n

i=1 ξiei and a =
∑n

i=1 αiei this equation becomes

(zi − z)ξi = αi, i = 1, . . . , n,

n∑

i=1

ξi = 0.

Hence ξi = αi

zi−z
if z 6= z1, . . . , zn. Thus in this case a ∈ R (S − z) if and only if

n∑

i=1

αi

zi − z
= 0.

If z = zi for some i ∈ {1, . . . , n} we have a ∈ R (S − z) if and only if αi = 0. Thus
the zeros of M1(z) coincide with those of the polynomial

n∑

i=1

αi

n∏

j=1

j 6=i

(zj − z).

It remains to prove the relation (5.4). Let l ∈ {1, . . . , n− 1} be such that Sl−1a ∈
D(S) but Sl 6∈ D(S). Such a number l exists as Ska =

∑n

i=1 zk
i αiei and

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 z1 z2
1 . . . zn−1

1

1 z2 z2
2 . . . zn−1

2
...

...
...

...
1 zn z2

n . . . zn−1
n

∣
∣
∣
∣
∣
∣
∣
∣
∣

6= 0.
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Thus S0a ∈ D(S), but it is impossible that Ska ∈ D(S) for k = 0, . . . , n − 1.
Consider the power series expansion of (Sd − z)−1 outside of a sufficiently large
disc:

(Sd − z)−1 = −
∞∑

k=0

1

zk+1
Sk

d .

It follows that

M1(z) = [(Sd − z)−1a, a] = −
∞∑

k=0

1

zk+1
[Sk

da, a].

Note that Sk
da = Ska for k = 0, . . . , l − 1: For k = 0 this assertion is trivial. For

k = 1 ≤ l − 1 we have

Sa = Sda + [a, a]h◦,

and, as [a, a] =
∑n

i=1 ziαi = 0 we find Sa = Sda. Using induction we obtain for
k ≤ l − 1,

Ska = S(Sk−1a) = Sd(S
k−1a) + [Sk−1a, a]h◦ = Sd(S

k−1
d a) = Sk

da,

as [Sk−1a, a] =
∑n

i=1 zk
i αi = 0. Thus

M1(z) = −
l−1∑

k=0

1

zk+1
[Ska, a] −

∞∑

k=l

1

zk+1
[Sk

da, a]

= −
1

zl

(
n∑

i=1

zl
iαi

)

−
1

zl+1

∞∑

k=l

1

zk−l
[Sk

da, a],

and we find

lim
z→∞

zlM1(z) = −
n∑

i=1

zl
iαi.

The proof is complete. 2

Remark 5.3. The function N1(z) has only simple zeros.

Let T n be as in Definition 3.6. From Proposition 4.1 and Proposition 5.2 we
now get:

Theorem 5.4. Let n ∈ N, z1, . . . , zn ∈ C
+ and w1, . . . , wn ∈ C

+ be given such
that the corresponding Pick matrix P is positive semidefinite, rankP = n − 1 and
Ph◦ = 0 for a vector h◦ =

∑n

i=1 χ◦
i ei 6= 0 with

∑n

i=1 χ◦
i = 1. Let α1, . . . , αn be the

solution of the system (5.1).
The solutions f of the interpolation problem (4.1) in N 0 ∪ N 1 are given by the
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formula

fτ (z) =

n∑

i=1

χ◦
i wi

n∏

j=1

j 6=i

(z − zj)

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(z − zj)

−

n∏

i=1

(z − zi)(z − zi)

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(z − zj)




n∑

i=1

αi

n∏

j=1

j 6=i

(z − zj) + τ(z)
n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(z − zj)





·

The parameter τ runs through those functions of T n for which

τ(zk) 6= −

n∑

i=1

αi

n∏

j=1

j 6=i

(zk − zj)

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(zk − zj)
, k = 1, . . . , n,

holds. The function f∞ is the unique solution in N 0.

II. Consider now the case h◦∈ D(S). Assume that Ph◦= 0 for h◦=
∑n

i=1 χ◦
i ei 6= 0

with
∑n

i=1 χ◦
i = 0. Let γ1, . . . , γn be the solutions of

n∑

i=1

γi

(
wi − wj

zi − zj

−
wi − w2

zi − z2

)

= 0, j = 3, . . . , n, γ1 = 0,

which satisfy additionally

n∑

i,j=1

wi − wj

zi − zj

γiγj = 1,
n∑

i=1

γi ∈ R,

and let α1, . . . , αn be the solutions of

n∑

i=1

αi

(
wi − wj

zi − zj

−
wi − w2

zi − z2

)

=
1

n∑

i=1

γi

(zj − z2), j = 3, . . . , n,

α1 = 0,

n∑

i=2

αi = 0.

Moreover, let

c1 =
1

n∑

i=1

γi

n∑

i=1

ziχ
◦
i , c2 = z1.
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Let T d be as in Definition 3.15 with c1, c2 from above. With similar computations
as in the case where D(S) is nondegenerated we obtain:

Theorem 5.5. Let n ∈ N, z1, . . . , zn ∈ C
+ and w1, . . . , wn ∈ C

+ be given such
that the corresponding Pick matrix P is semidefinite, rankP = n − 1 and that
Ph◦ = 0 for h◦ =

∑n
i=1 χ◦

i ei 6= 0 with
∑n

i=1 χ◦
i = 0.

The solutions of the interpolation problem (4.1) in N 0∪N 1 are given by the formula

fτ (z) =

n∑

i=1

χ◦
i wi

n∏

j=1

j 6=i

(z − zj)

n∑

i=1

χ◦
i

n∏

j=1

j 6=i

(z − zj)
−

1
n∑

i=2

γi

n∏

j=1

j 6=i

(z − zj)

·

n∏

i=2

(z − zi)(z − zi)

(z − z1)(z − z1)(z
n∑

i=2

γi

n∏

j=1

j 6=i

(z − zj) +
n∑

i=2

αi

n∏

j=1

j 6=i

(z − zj)) + τ(z)
n∑

i=2

γi

n∏

j=1

j 6=i

(z − zj)

,

The parameter τ runs through those functions of T d for which

τ(zk) 6= −

(zk − z1)(zk − z1)(zk

n∑

i=2

γi

n∏

j=1

j 6=i

(zk − zj) +
n∑

i=2

αi

n∏

j=1

j 6=i

(zk − zj))

n∑

i=2

γi

n∏

j=1

j 6=i

(zk − zj)

holds for k = 1, . . . , n. The function f∞ is the unique solution in N 0.
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