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We introduce triplet spaces for symmetric relations with defect index (1, 1) in a Pon-
tryagin space. Representations of Pontryagin spaces by spaces of vector-valued analytic
functions are investigated. These concepts are used to study 2× 2-matrix valued ana-
lytic functions which satisfy a certain kernel condition.

1 Introduction

If P is a Pontryagin space, S is a densely defined symmetric operator in P with defect index

(1, 1), A is a selfadjoint extension of S acting in some Pontryagin space extending P, and u

is an element of P, then the function

r(z) = [(A− z)−1u, u], z ∈ ρ(A), (1.1)

is called the u-resolvent of S induced by A. It is proved in [KL2] that the set of all u-resolvents

of S can be parametrized by

r(z) =
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
, (1.2)

with a parameter function τ(z) and certain analytic functions w11, w12, w21, w22. A matrix

W (z) =

(
w11(z) w12(z)
w21(z) w22(z)

)

such that (1.2) parametrizes the u-resolvents of S is called a u-resolvent matrix of S. It is

shown in [KL2] thatW is uniquely determined up to some simple transformations. Moreover,

if W is a u-resolvent matrix, the kernel

W (z)JW (w)∗ − J

z − w
(1.3)

has finitely many negative squares. If the entries of W (z) satisfy certain growth conditions,
then in [KL2] also a converse result is shown.



In this paper we show that the above results hold without additional assumptions,
if we allow u to be a so-called generalized element and S (A) to be a symmetric (selfadjoint)

relation. Since we use generalized elements u, we have to consider regularized resolvents in
(1.1). Hence we will speak of generalized u-resolvents and, correspondingly, of generalized

u-resolvent matrices.
With this more general notion we show in particular that any analytic 2×2-matrix

function W (z), such that the kernel (1.3) has finitely many negative squares is a generalized

u-resolvent matrix for some choice of P, S and u.
If P is a Hilbert space and S is a densely defined operator, similar results are

obtained e.g. in [GG], [HS], [S2].
In Section 2 we collect some preliminary material which is well known and has been

extensively studied in particular situations. It will however be needed in a general setting.
In Section 3 we introduce the notions of so called triplet spaces and of generalized elements.

Also the action of resolvents on generalized elements is studied; in particular a version of
the Krein formula is obtained.

Section 4 is devoted to the study of generalized u-resolvents and generalized u-
resolvent matrices. We show that, for given P, S and u, there exists a generalized u-

resolvent matrix W (z) and that, if S satisfies a certain regularity condition, W (z) is uniquely
determined up to some simple transformations.

In Section 5 we construct, for given P, S and u, an isomorphism of P onto a space
Pu which consists of pairs of analytic functions. Thereby the relation S corresponds to a

certain symmetric relation, which is closely related to the operator of multiplication by the

independent variable. The space Pu is identified as the reproducing kernel Pontryagin space
with the matrix kernel

W (z)JW (w)∗ − J

z − w
,

where W (z) is an appropriately chosen generalized u-resolvent matrix, and

J =

(
0 −1
1 0

)
.

We show that the difference quotient operator defined by

R1(a) : f(z) 7→
f(z) − f(a)

z − a
, f ∈ Pu,

acts as a bounded linear operator on Pu. If u ∈ P and S is a densely defined symmetric

operator, some of the results of Sections 4 and 5 can be found in [KL2]. Compare also the
book [GG] and the reference to some work of M.G.Krein given there.

Section 6 is concerned with the study of arbitrary analytic 2 × 2-matrix functions
W (z), which are such that the kernel (1.3) has finitely many negative squares. We show that

any such matrix function W (z) can be represented as a generalized u-resolvent matrix. This
result implies that the assertions stated for the spaces Pu hold for any reproducing kernel

space generated by a kernel of the form (1.3). In particular any such reproducing kernel
space is closed under application of R1(a).



Finally, in Section 7, a relation between generalized u-resolvent matrices of S and
of a symmetric extension S1 of S is investigated. More precisely, we consider the following

situation: let two Pontryagin spaces P and P1 and two symmetric relations S ⊆ P2 and
S1 ⊆ P2

1, both with defect index (1, 1), be given and assume that P ⊆ P1 and S ⊆ S1. If u

is a generalized element of P, we show that u can be considered as a generalized element of
P1. Hence it makes sense to speak of generalized u-resolvent matrices W (z) and W1(z) of

S and S1, respectively. We show that there exists a matrix M(z), which satisfies

W1(z) = W (z)M(z),

and for which the kernel (1.3) has finitely many negative squares. The matrix M(z) does
not depend on the choice of u.

We will use some results concerning the geometry of Pontryagin spaces and their
symmetric (selfadjoint) relation, which are provided in [DS] and [IKL]. Also our notation is

similar to that of these references. Further standard references are [ADSR] and [KL2].
The results considered in this paper applied to entire operators in the sense of

M.G.Krein are closely connected with the theory of Hilbert spaces of entire functions de-
veloped in [dB]. Since our results are valid for Pontryagin spaces, this connection leads us

to a generalization of L.de Branges theory of spaces of entire functions to indefinite inner
product spaces (see [KW]).

2 Some preliminary results

In this section we collect some results concerning symmetric relations in Pontryagin spaces,

which will be used in the sequel. In particular we give the Krein formula on the description
of generalized resolvents in a general setting.

In various special situations these results are well known. Compare for example
[DLS1], [DLS2] or [GG].

Let (P, [., .]) be a Pontryagin space and let S be a closed symmetric relation in P,
i.e. a closed subspace of P2 with the property

[f1, g2] − [g1, f2] = 0, (f1; g1), (f2; g2) ∈ S.

We call a point z ∈ C a point of regular type of S, if for some γ > 0

‖f‖ ≤ γ‖g − zf‖, (f ; g) ∈ S,

holds. Here ‖.‖ denotes a positive definite norm on P which is induced by a fundamental
symmetry. Denote by r(S) the set of all points z ∈ C, such that z and z are points of regular

type of S. It is proved in [DS] that r(S) contains C \ R with exception of those points z,
such that z or z is an eigenvalue of S.

Throughout the following we assume r(S) 6= ∅. It is well known that the number
def(S − z), i.e. the codimension of ran (S − z) is constant on each connected component of

r(S). Since the upper (lower) half plane with exception of the eigenvalues of S is contained in
a single component of r(S) the number def(S−z) is constant on the upper (lower) half plane



with possible exception of finitely many points, which must be eigenvalues of S. Denote this
number by n+ (n−), the so called defect numbers of S. The pair (n+, n−) is called the defect

index of S. For an inner product space A, denote by A◦ its isotropic part.

Lemma 2.1. Assume that S has finite and equal defect numbers and let z ∈ C. Then
z ∈ r(S) if and only if there exists a canonical selfadjoint extension A ⊆ P2 of S with

z ∈ ρ(A).
Proof : If A is a canonical selfadjoint extension of S such that z ∈ ρ(A), then clearly

z ∈ r(S).
Assume now that z ∈ r(S) \ R. Then also z ∈ r(S), the numbers z and z are not

eigenvalues of S, and ran (S − z) and ran (S − z) are closed subspaces of P. The Cayley
transform V = I + (z − z)(S − z)−1 of S (compare [DS]) is an injective isometric operator

of ran (S − z) onto ran (S − z). Hence V maps ran (S − z)◦ onto ran (S − z)◦, in particular
dim ran (S − z)◦ = dim ran (S − z)◦. Decompose P as

P = P1[+̇](P2+̇P′
2)[+̇]P3,

where P2 = ran (S − z)◦, P1 + P2 = ran (S − z) and P′
2 is skewly linked with P2 (compare

[IKL]). Put Q1 = VP1, Q2 = VP2 = ran (S − z)◦, and decompose P as

P = Q1[+̇](Q2+̇Q′
2)[+̇]Q3,

where Q′
2 is skewly linked with Q2. Then Q1 + Q2 = ran (S − z). Since S has equal defect

numbers dim P3 = dim Q3, and since V is isometric Ind−P3 = Ind−Q3. Choose an isometry

V3 of P3 onto Q3 and extend V |P2
to an isometry V2 of P2+̇P′

2 onto Q2+̇Q′
2. The existence

of such a mapping V2 is seen by choosing appropriate bases of P2+̇P′
2 and Q2+̇Q′

2. The

mapping
U = V |P1

[+̇]V2[+̇]V3

is a unitary operator of P onto itself which extends V . Its inverse Cayley transform is
selfadjoint, extends S and contains z in its resolvent set.

For z ∈ r(S) ∩ R consider the symmetric and bounded operator (S − z)−1, which
is defined on a domain with codimension one. Let G be a fundamental symmetry of P.

Then G(S − z)−1 is a bounded symmetric operator in the Hilbert space (P, [G., .]). It is
well known (see [AG]) that there exists a bounded operator B, which is selfadjoint with

respect to the inner product [G., .], and which extends G(S − z)−1. Thus (GB)−1 + z is a
selfadjoint relation with respect to the inner product [., .], which extends S and contains z

in its resolvent set.

The set ∆(S) is the set of those points z ∈ r(S), such that ran (S − z) is degenerated.

It is proved in [DS] that ∆(S) lies symmetric with respect to the real axis and that, if
∆(S) 6= r(S), it contains no interior point and its complement C \ ∆(S) is open. If domS

contains a maximal negative subspace, then ∆(S) is contained in a strip around the real axis
(see [So]). The relation S is called a standard symmetric relation if ∆(S) 6= r(S).



Lemma 2.2. Assume that S has defect index (1, 1) and let z ∈ r(S). If z 6∈ ∆(S)∪R, then
z ∈ ρ(A) for each canonical selfadjoint extension A of S. If z ∈ ∆(S) ∪ R, then there exists

exactly one canonical selfadjoint extension A of S with z ∈ σ(A). Moreover, if ∆(S) 6= r(S),
then this extension has nonempty resolvent set.

Proof : Since z ∈ r(S) and S has defect index (1, 1), we have def(S − z) = 1. Assume that
z ∈ σ(A) for a canonical selfadjoint extension A of S. Since z ∈ r(S), we have z ∈ σp(A).

By

ker (A− z) = ran (A− z)⊥ ⊆ ran (S − z)⊥, (2.1)

we find that dim ker (A− z) = 1 and that ker (A− z) is uniquely determined by S and z.
Let f ∈ ker (A− z), f 6= 0, then (f ; zf) ∈ A \ S. Since S has defect index (1, 1), it

follows by considering the linear isomorphism B 7→ (B − z)−1 of the set of all subspaces of
P2 onto itself, that dimA/S = 1. Hence A = S+̇span {(f ; zf)}, and is uniquely determined

by S and z. If z 6∈ R, ker (A− z) is neutral and by (2.1) we have z ∈ ∆(S).
If z ∈ ∆(S) ∪ R, and f ∈ ran (S − z)⊥, then the relation defined by A :=

S+̇span {(f ; zf)} is selfadjoint. Assume that its resolvent set is empty. The results of
[DS] imply that we have (λf ;µf) ∈ A for all λ, µ ∈ C. Moreover, the element f is neutral.

Since, for z ∈ r(S), we have def(S − z) = 1, the relation (2.1) shows that ∆(S) = r(S).

Assume in the following that S has defect index (n, n), n ∈ N. If A is a canonical selfadjoint

extension of S, the mapping

Uzw = I + (z − w)(A− z)−1, z, w ∈ ρ(A),

maps ran (S − z) onto ran (S −w). Hence U∗
zw = Uzw maps ran (S −w)⊥ onto ran (S − z)⊥.

Here the adjoint and the orthogonal companion have to be understood with respect to the
inner product [., .]. Note that Uz2z3

Uz1z2
= Uz1z3

, in particular Uzw is a bijection.

Let z0 ∈ r(S) and choose a selfadjoint extension A of S with z0 ∈ ρ(A). Let
{ϕ1(z0), . . . , ϕn(z0)} be a basis of the defect space at z0, i.e. let

span {ϕ1(z0), . . . , ϕn(z0)} = ran (S − z0)
⊥.

For notational reasons we denote in the following by ϕ(z0) the vector

ϕ(z0) = (ϕ1(z0), . . . , ϕn(z0))
T .

All formulas involving ϕ(z0) have to be interpreted as vector- (matrix-) formulas. Let ϕ(z)
be defined by

ϕ(z) = (I + (z − z0)(A− z)−1)ϕ(z0), z ∈ ρ(A). (2.2)

Then ϕ(z) parametrizes the defect spaces of S, i.e. satisfies

span {ϕ1(z), . . . , ϕn(z)} = ran (S − z)⊥.

A n× n-matrix function Q(z) which satisfies

Q(z) −Q(w)∗

z − w
= [ϕ(z), ϕ(w)], z, w ∈ ρ(A), (2.3)



is called a Q-function of S and A. By the requirement (2.3), Q is uniquely determined up
to an additive constant hermitian matrix. If S is not standard, Q is a real constant.

Recall the notion of a generalized Nevanlinna function: Let κ ∈ N ∪ {0}. Then a
n× n-matrix function Q, which is analytic in some open set O and which is not a constant

hermitian matrix, belongs to the class N n
κ if Q(z) = Q(z)∗ whenever z, z ∈ O, and if the

matrix kernel
Q(z) −Q(w)∗

z − w
, z, w ∈ O,

has κ negative squares. If n = 1 we write Nκ instead of N 1
κ . Moreover, let Ñ0 be the union

of N0 and of all constant functions Q(z) = t ∈ R ∪ {∞}, and put Ñκ = Nκ for κ > 0.
A selfadjoint extension Ã of S which acts in a Pontryagin space P̃ ⊇ P is called

P-minimal, if the closed linear span

cls (P ∪ {(Ã− z)−1f : z ∈ ρ(Ã), f ∈ P}) = P̃.

Recall that an arbitrary extension of S can always be reduced to a minimal one.

Denote in the following by P̃ the orthogonal projection of P̃ onto P and by Ind−P̃

the negative index of P̃. We will use the Krein formula for the description of generalized

resolvents in the following form:

Proposition 2.3. Let S be a closed symmetric relation in the Pontryagin space P with
defect index (1, 1). Choose a canonical selfadjoint extension A of S with ρ(A) 6= ∅, and let

Q(z) and ϕ(z) be defined by (2.3) and (2.2). The relation

P̃ (Ã− z)−1|P = (A− z)−1 −
[., ϕ(z)]

Q(z) + τ(z)
ϕ(z) (2.4)

establishes a bijective correspondence between the P-minimal selfadjoint extensions Ã ⊆ P̃2,
ρ(Ã) 6= ∅ of S and the functions τ ∈ Ñκ̃−κ \ {−Q}. Here κ = Ind−P and κ̃ = Ind−P̃.

Moreover, in (2.4) Ã is a canonical extension of S if and only if τ(z) = t ∈ R ∪ {∞}.
Usually in the literature the relation S in Proposition 2.3 is required to be standard.

Recently H.de Snoo gave a proof of the Krein formula which, although formulated only for

the case of Hilbert spaces, immediately carries over to the Pontryagin space situation, and
which does not require S to be standard. For the convenience of the reader we outline this

proof.
Proof : [of Proposition 2.3] First note that, by the considerations of [DLS1], a analytic

operator valued function R(z) is a generalized resolvent of S if and only if R(z) = R(z)∗,
the kernel

R(z) − R(w)∗

z − w
− R(w)∗R(z)

has finitely many negative squares and R(z)|ran (S−z) = (S − z)−1.

Let τ(z) ∈ Ñκ̃−κ \ {−Q(z)} and let R(z) be defined by the right hand side of (2.4).

A computation shows that for f, g ∈ P

[

(
R(z) −R(w)∗

z − w
− R(w)∗R(z)

)
f, g] =



=

(
[g, ϕ(w)]

q(w) + τ(w)

)
τ(z) − τ(w)

z − w

(
[f, ϕ(z)]

q(z) + τ(z)

)
. (2.5)

Since by the definition of R(z)

R(z)|ran (S−z) = (A− z)−1|ran (S−z) = (S − z)−1,

the operator function R(z) defines a generalized resolvent of S.

Conversely, let R(z) = P̃ (Ã− z)−1|P be a generalized resolvent of S. Then

ran (S − z) ⊆ ker (R(z) − (A− z)−1). (2.6)

Hence ran (R(z) − (A− z)−1) ⊆ ran (S − z)⊥, and we find

R(z)f = (A− z)−1f + c(f, z)ϕ(z).

Clearly, for fixed z, the term c(f, z) is a bounded linear functional on P, its kernel containes
ran (S − z), and, for fixed f , c(f, z) depends analytically on z. These facts imply that R(z)

can be written as
R(z) = (A− z)−1 + ψ(z)[., ϕ(z)]ϕ(z),

where ψ(z) is analytic on ρ(A) ∩ ρ(Ã). If we put τ(z) = −q(z) − 1
ψ(z)

, we obtain a repre-

sentation (2.4) of R(z). By (2.5) the assertion follows.

3 Triplet spaces related to a symmetric operator

Let (P, [., .]) be a Pontryagin space with negative index κ, and denote by (., .) a Hilbert

space inner product on P induced by a fundamental symmetry. Let S be a closed symmetric
relation in P with defect index (1, 1), and denote by S∗ the adjoint relation of S with respect

to [., .]. Write

S∗(0) = {g ∈ P :

(
0
g

)
∈ S∗}, S∗

∞ = {0} × S∗(0).

In the following we construct two Hilbert spaces P+ and P− from P and S. Provide P2

with the positive definite inner product (., .)+ defined by
((

f1

g1

)
,

(
f2

g2

))

+

= (f1, f2) + (g1, g2),

(
f1

g1

)
,

(
f2

g2

)
∈ P2,

and denote by P+ the space

P+ = (S∗, (., .)+).

Let π be the mapping of P+ into P defined by π

(
f
g

)
= f . By π∗ we denote the adjoint

of π with respect to the inner products (., .)+ on P+ and [., .] on P. We provide P/ker π∗

with a positive definite inner product:

(f, g)− = (π∗f, π∗g)+, f, g ∈ P/ker π∗.



Note here that the action of π∗ on P/ker π∗ is well defined. Then (P/ker π∗, (., .)−) is a
Pre-Hilbert space and has a completion (D−, (., .)−). Let S∗(0)′ be an isomorphic copy of

S∗(0) ⊆ (P, (., .)), and denote by P− the space

P− = D− ⊕ S∗(0)′,

provided with an inner product (., .)− in the natural way. Here and in the following, the
symbol A⊕B denotes the direct and orthogonal sum of the inner product spaces A and B.

We also consider the mapping V ′ : P/ker π∗ ⊕ S∗(0)′ → P+ defined by

V ′(f + x) = π∗f +

(
0
x

)
, f ∈ P/ker π∗, x ∈ S∗(0)′.

By the construction of P− the factor space P/ker π∗ can be canonically as a linear subspace

of P−. We denote by ι the canonical mapping of P into P−. The chain

(P+, (., .)+)
π
→ (P, [., .])

ι
→ (P−, (., .)−)

is called the space triplet associated with the symmetry S.
If (P̃, [., .]) is a Pontryagin space extending P, consider the spaces

P̃+ = P+ ⊕ (P̃ ⊖ P)2, P̃− = P− ⊕ (P̃ ⊖ P)2,

provided with inner products (., .)+ and (., .)− in a natural way. Here, and in the following,
the symbol A ⊖ B denotes the orthogonal companion of B in the inner product space A.

Extend V ′ by
Ṽ ′ = V ′ ⊕ I,

where I denotes the identity operator in the space (P̃ ⊖ P)2. Note that P+ ⊕ (P̃ ⊖ P)2

coincides as a set with the adjoint relation of S in P̃.

Lemma 3.1. We have
ker π = S∗

∞, ran π = domS∗,

and
ker π∗ = (domS∗)[⊥] = S(0), ran π∗ = (S∗

∞)(⊥)+ .

Moreover, the mapping V ′ is isometric, and V ′ι = π∗.
Proof : The first part of the lemma follows immediately from the above definitions and

general properties of adjoints.
In order to show that V ′ is isometric let u, v ∈ P/ker π∗ ⊕ S∗(0)′, u = f + x,

v = g + y, and compute

(u, v)− = (f, g)− + (x, y) = (π∗f, π∗g)+ +

((
0
x

)
,

(
0
y

))

+

= (V ′u, V ′v)+.

The relation V ′ι = π∗ follows from the definition of V ′.

Since P/ker π∗ ⊕ S∗(0)′ is dense in P− and ranπ∗ + S∗
∞ is dense in P+, Lemma 3.1 has the

following corollary:



Corollary 3.2. The mappings V ′ and Ṽ ′ can be extended to unitary mappings V of P−

onto P+ and Ṽ of P̃− onto P̃+, respectively.

Now we are in position to define a duality [., .]± between the spaces P̃+ and P̃−:

[(
f
g

)
, u

]

±

=

((
f
g

)
, Ṽ u

)

+

,

(
f
g

)
∈ P̃+, u ∈ P̃−.

For notational convenience we set

[
u,

(
f
g

)]

±

=

[(
f
g

)
, u

]

±

,

(
f
g

)
∈ P̃+, u ∈ P̃−.

The mapping ι is the adjoint of π with respect to the duality [., .]±.

Lemma 3.3. If

(
f
g

)
∈ P+ and h ∈ P, we have

[(
f
g

)
, ιh

]

±

=

[
π

(
f
g

)
, h

]
.

Proof : Using the definition of [., .]± we obtain

[(
f
g

)
, ιh

]

±

=

((
f
g

)
, V ιh

)

+

=

((
f
g

)
, π∗h

)

+

=

[
π

(
f
g

)
, h

]
.

Consider a selfadjoint extension A of S with ρ(A) 6= ∅ which acts in a Pontryagin space

P̃ ⊇ P. Since P̃+ can be understood as the adjoint relation of S in P̃, we have A ⊆ P̃+.
For z ∈ ρ(A) let mappings R+

z : P̃ → P̃+ and R−
z : P̃− → P̃ be defined by

R+
z f =

(
(A− z)−1f

(I + z(A− z)−1)f

)
, f ∈ P̃,

and
R−

z = (R+
z )∗Ṽ .

Here (R+
z )∗ is the adjoint of R+

z with respect to the inner products (., .)+ on P̃+ and [., .] on
P̃.

Denote in the following by P̃ and P̃+ the orthogonal projections of P̃ onto P and
of P̃+ onto P+, respectively, and put

R̃+
z = P̃+R+

z |P, R̃
−
z = P̃R−

z |P−
.

Let

T (z) =

{(
P̃ (A− z)−1f

(I + zP̃ (A− z)−1)f

)
: f ∈ P

}



be the so called S̆traus relation associated with A. It is well known (compare [DLS2]) that
S ⊆ T (z) ⊆ S∗ = P+ and that codim S∗T (z) = 1.

Note that, if A is a canonical extension of S, i.e. if P̃ = P, we have R̃+
z = R+

z ,
R̃−

z = R−
z and T (z) = A.

Lemma 3.4. For the mappings R+
z and R−

z the following identities hold:

R+
z − R+

w = (z − w)R+
z (A− w)−1, z, w ∈ ρ(A), (3.1)

R−
z −R−

w = (z − w)(A− z)−1R−
w , z, w ∈ ρ(A). (3.2)

They satisfy
[R+

z f, u]± = [f, R−
z u], f ∈ P̃, u ∈ P̃−. (3.3)

Moreover, for z ∈ ρ(A), we have

kerR+
z = {0}, ranR+

z = A, kerR−
z = Ṽ −1(P̃+ ⊖ A), ranR−

z = P̃,

and

ker R̃+
z = {0}, ran R̃+

z = T (z), codim P+
ran R̃+

z = 1,

ker R̃−
z = V −1(P+ ⊖ T (z)), ran R̃−

z = P. (3.4)

The mapping R̃−
z extends the generalized resolvent P̃ (A− z)−1|P in the sense that

R̃−
z ι = P̃ (A− z)−1|P. (3.5)

Proof : We compute

(z − w)R+
z (A− w)−1 =

(
(z − w)(A− z)−1(A− w)−1

(z − w)(I + z(A− z)−1)(A− w)−1

)
=

=

(
(A− z)−1 − (A− w)−1

(z − w)(A− w)−1 + z((A− z)−1 − (A− w)−1)

)
=

=

(
(A− z)−1 − (A− w)−1

z(A− z)−1 − w(A− w)−1

)
= R+

z − R+
w ,

which proves (3.1). The relation (3.2) follows by taking adjoints and multiplying with Ṽ

from the right.
Let u ∈ P̃− and f ∈ P̃, then

[f, R−
z u] = [f, (R+

z )∗Ṽ u] = (R+
z f, Ṽ u)+ = [R+

z f, u]±.

Assume that f ∈ kerR+
z , then (A− z)−1f = 0 and f + z(A− z)−1f = 0, hence f = 0. It is

elementary to show that ranR+
z = A, and therefore ker (R+

z )∗ = P̃+ ⊖ A. This yields

kerR−
z = Ṽ −1(P̃+ ⊖ A).



Since kerR+
z = 0, we have ran (R+

z )∗ = P̃. The closed range theorem and the fact that

Ṽ is onto show that ranR−
z = P̃. The assertions concerning R̃+

z and R̃−
z follow by similar

arguments and the facts concerning the S̆traus relation which have been mentioned above.
Relation (3.5) follows from

R̃−
z ιf = P̃ (R+

z )∗Ṽ ιf = P̃ (R+
z )∗π∗f = P̃ (πR+

z )∗f =

= P̃ ((A− z)−1)∗f = P̃ (A− z)−1f, f ∈ P.

Let A be a canonical selfadjoint extension of S. If ϕ(z) are defect elements of S according

to (2.2), clearly

(
ϕ(z)
zϕ(z)

)
∈ P+.

Lemma 3.5. Assume that S is minimal, i.e. P = cls {ϕ(z) : z ∈ ρ(A)}. Then

P+ = cls {

(
ϕ(z)
zϕ(z)

)
: z ∈ ρ(A)}. (3.6)

Proof : Choose w ∈ ρ(A). First note that ϕ(w) ∈ (S∗ − w)−1(0). Since dimS∗/A = 1, we
have

(S∗ − w)−1 = (A− w)−1+̇span {(0;ϕ(w))}.

Since S is minimal and (A− w)−1 is a bounded operator, we find

cls {(ϕ(z);
ϕ(w) − ϕ(z)

w − z
) : z ∈ ρ(A) \ {w}} = (A− w)−1.

Hence (S∗ − w)−1 = cls {((w − z)ϕ(z);−ϕ(z)) : z ∈ ρ(A)} which implies (3.6).

The Krein formula can be rewritten in terms of R̃+
z and R̃−

z .

Lemma 3.6. Let A be a fixed canonical selfadjoint extension of S. Then for each selfadjoint
extension Ã of S the mappings R̃+

z and R̃−
z can be written as

R̃+
z = R+

z −
[., ϕ(z)]

q(z) + τ(z)

(
ϕ(z)
zϕ(z)

)
, z ∈ ρ(Ã), (3.7)

and

R̃−
z = R−

z −

[
.,

(
ϕ(z)
zϕ(z)

)]

±

q(z) + τ(z)
ϕ(z), z ∈ ρ(Ã), (3.8)

respectively. Here the elements ϕ(z) parametrize the defect spaces of S according to (2.2), q

is a Q-function of A and S as in (2.3), and τ is the parameter function associated with Ã
by the Krein formula.



Proof : Relation (3.7) follows immediately from (2.4) and the definition of R+
z . Taking

adjoints in (3.7) and taking z instead of z we obtain

(R̃+
z )∗ = (R+

z )∗ −

(
.,

(
ϕ(z)
zϕ(z)

))

+

q(z) + τ(z)
ϕ(z).

By the definiton of [., .]± and R̃−
z we obtain (3.8).

4 Generalized u-resolvents and u-resolvent matrices

Throughout this and the following sections we assume that r(S) 6= ∅. Let Ã be a selfadjoint

extension of S with nonempty resolvent set acting in a Pontryagin space P̃ ⊇ P, and choose

z0 ∈ ρ(Ã) ∩ C+. We define a regularized generalized resolvent
ˆ̃
Rz : P− → P2 by

ˆ̃
Rz =


 R̃−

z −
eR−

z0
+ eR−

z0

2

zR̃−
z −

z0
eR−

z0
+z0

eR−

z0

2


 .

If A is a canonical selfadjoint extension of S we speak of a regularized resolvent R̂z. Using
(3.2) a straightforward calculation gives

ˆ̃
Rz = (z − Re z0)P̃

+R+
z0
R−

z0
|P−

+ (z − z0)(z − z0)P̃
+R+

z0
(Ã− z)−1R−

z0
|P−

. (4.1)

This relation shows that
ˆ̃
Rz is in fact a mapping of P− into P+.

The following result is an analogue to Lemma 3.6 for regularized resolvents.

Proposition 4.1. Let A be a fixed canonical selfadjoint extension of S with the regularized

resolvent R̂z, and let the functions τ , q(z) and ϕ(z) have the same meaning as in Lemma
3.6.

Then for each selfadjoint extension Ã the regularized generalized resolvent
ˆ̃
Rz can

be written as

ˆ̃
Rz = R̂z −

[
.,

(
ϕ(z)
zϕ(z)

)]

±

q(z) + τ(z)

(
ϕ(z)
zϕ(z)

)
+ (4.2)

+

[
.,

(
ϕ(z0)
z0ϕ(z0)

)]

±

2(q(z0) + τ(z0))

(
ϕ(z0)
z0ϕ(z0)

)
+

[
.,

(
ϕ(z0)
z0ϕ(z0)

)]

±

2(q(z0) + τ(z0))

(
ϕ(z0)
z0ϕ(z0)

)
.

Proof : By Lemma 3.6 we have

ˆ̃
Rz =


 R̃−

z −
eR−

z0
+ eR−

z0

2

zR̃−
z −

z0
eR−

z0
+z0

eR−

z0

2


 =



=


 R−

z −
R−

z0
+R−

z0

2

zR−
z −

z0R−

z0
+z0R−

z0

2


−

[
.,

(
ϕ(z)
zϕ(z)

)]

±

q(z) + τ(z)

(
ϕ(z)
zϕ(z)

)
+

+

[
.,

(
ϕ(z0)
z0ϕ(z0)

)]

±

2(q(z0) + τ(z0))

(
ϕ(z0)
z0ϕ(z0)

)
+

[
.,

(
ϕ(z0)
z0ϕ(z0)

)]

±

2(q(z0) + τ(z0))

(
ϕ(z0)
z0ϕ(z0)

)
.

Definition 4.2. Let u ∈ P−. If α ∈ R and Ã is a selfadjoint extension of S with nonempty
resolvent set, the function

r̃(z) = α+ [
ˆ̃
Rzu, u]±, z ∈ ρ(Ã),

is called the generalized u-resolvent of S induced by Ã. If Ã is P-minimal and Ind−P̃ = κ̃,

we say that the generalized u-resolvent is of index κ̃.
Note that by (3.3) and (4.1) the function r̃(z) is real, i.e. satisfies r̃(z) = r̃(z),

z ∈ ρ(Ã). In the following we will identify the set of generalized u-resolvents of S as the
set of Q-functions corresponding to selfadjoint extensions Ã of S and certain symmetric

restrictions of Ã (which are in general different from S).

Lemma 4.3. Let u ∈ P−, and put γ(z) = R−
z u. Then

γ(z) = (I + (z − w)(Ã− z)−1)γ(w), z, w ∈ ρ(Ã). (4.3)

The elements γ(z) vanish identically if and only if Ã is a canonical extension of S and
Ṽ u ⊥ Ã.

If γ(z) is a family of elements of P̃ which satisfies (4.3) for some extension Ã of

S, then there exists an element u ∈ P̃−, such that γ(z) = R−
z u, z ∈ ρ(Ã).

Proof : The first assertion follows immediately from (3.2). Assume now that γ(z) vanishes

identically, i.e. u ∈ kerR−
z , z ∈ ρ(Ã). Then u ∈ ker R̃−

z , and by (3.4) we find V u⊥T (z̄) for
all z ∈ ρ(Ã). As the S̆traus relation T (z) has codimension one in P+ we obtain that T (z)

does not depend on z. Then Ã is canonical and T (z) = Ã. Conversely, if Ã is canonical and
Ṽ u⊥Ã then, by (3.4), γ(z) = 0 for all z ∈ ρ(Ã).

Let a family γ(z) be given, and choose z0 ∈ ρ(Ã). By Lemma 3.4, there exists an
element u ∈ P̃−, such that γ(z0) = R−

z0
u. Since both families γ(z) and R−

z u satsify (4.3),

they coincide for all z.

Corollary 4.4. If in Lemma 4.3, Ã is a canonical extension of S, then by the requirement
γ(z) = R−

z u, the element u is uniquely determined up to summands h ∈ V −1(P+ ⊖ A). For



any element h ∈ V −1(P+ ⊖ A), h 6= 0, we have

[(
ϕ(z)
zϕ(z)

)
, h

]

±

= β, z ∈ ρ(A),

for some constant β 6= 0. Any number β ∈ C \ {0} occurs in this relation for a suitable

choice of h.

Proof : Let h ∈ V −1(P+ ⊖ A), h 6= 0, be given. For z ∈ ρ(A) the element

(
ϕ(z)
zϕ(z)

)
does

not belong to A, and hence

[(
ϕ(z)
zϕ(z)

)
, h

]

±

6= 0. Since

(
(A− z)−1ϕ(w)

(I + z(A− z)−1)ϕ(w)

)
∈ A,

the latter scalar product is in fact independent from z:

[(
ϕ(z)
zϕ(z)

)
, h

]

±

=

[(
ϕ(w)
wϕ(w)

)
+ (z − w)

(
(A− z)−1ϕ(w)

(I + z(A− z)−1)ϕ(w)

)
, h

]

±

=

=

[(
ϕ(w)
wϕ(w)

)
, h

]

±

.

Proposition 4.5. Let u ∈ P−, and let r̃(z) be a generalized u-resolvent of S induced by
the selfadjoint extension Ã. Then r̃(z) is a Q-function of Ã and its restriction

Su =

{(
f
g

)
∈ Ã :

[(
f
g

)
, u

]

±

= 0

}
.

Any Q-function of a canonical selfadjoint extension Ã of S and some symmetric restriction

S1 of Ã can be represented in this way.
Proof : Assume first that a generalized u-resolvent r̃(z) is given. By (3.3)

[g − zf, R−
z u] = [R+

z (g − zf), u]± =

[(
f
g

)
, u

]

±

,

hence, by (4.3), the family γ(z) = R−
z u is an appropriate parametrization of the defect spaces

of Su.
To prove that r̃(z) is a Q-function of Su and Ã, we consider the Nevanlinna kernel

of r̃(z) and calculate using (4.1):

r̃(z) − r̃(w)

z − w
= [γ(z0), γ(z0)]+



+
(z − z0)(z − z0)[(Ã− z)−1γ(z0), γ(z0)] − (w − z0)(w − z0)[(Ã− w)−1γ(z0), γ(z0)]

z − w
=

=
(z − z0)[γ(z), γ(z0)] − (w − z0)[γ(w), γ(z0)]

z − w
=

=
(z − z0)[γ(z), γ(z0)] − (w − z0)[(I + (z − w)(A− w)−1)γ(z), γ(z0)]

z − w
= [γ(z), γ(w)].

Now let Ã be a canonical selfadjoint extension of S. Choose an appropriate parametrization

γ(z) of the defect spaces of S1. Due to Lemma 4.3, we may represent γ(z) by

γ(z) = R−
z u, z ∈ ρ(Ã),

for some element u ∈ P−. Since a Q-function is uniquely determined by its Nevanlinna

kernel up to additive real constants, the previous part of the proof yields the assertion.

Corollary 4.6. Let r̃(z) be a generalized u-resolvent of S induced by the selfadjoint
extension Ã. Assume that Ã acts in a Pontryagin space P̃ with negative index κ̃. Then

r̃(z) ∈ Ñκ′ for some κ′ ≤ κ̃.
Let W (z) be a 2× 2-matrix valued function and let τ(z) be a scalar function, both

meromorphic in some open set. If

W (z) =

(
w11(z) w12(z)
w21(z) w22(z)

)
,

we denote by W ◦ τ the scalar function

(W ◦ τ)(z) =
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
.

Clearly, W ◦ τ is meromorphic unless w21τ + w22 vanishes identically. A straightforward
computation shows that

W1 ◦ (W2 ◦ τ) = (W1W2) ◦ τ.

If u ∈ P− is given, denote by ru(S) the set of all z ∈ r(S) such that

[
u,

(
f
z̄f

)]

±

6= 0,

when f 6= 0, f ∈ ker (S∗ − z̄).

Definition 4.7. Let u ∈ P−, u 6= 0, be such that ru(S) 6= ∅. A 2 × 2-matrix valued

function W (z), analytic on ru(S), is called a u-resolvent matrix of S if for each τ ∈ Ñ0 the
function

r(z) = (W ◦ τ)(z)



is a generalized u-resolvents of S of index κ = Ind−P, and each such generalized u-resolvent
can be obtained in this way up to a real additive constant.

First we note that, if ru(S)∩C+ = ∅ or ru(S)∩C− = ∅, and if we choose a canonical
selfadjoint extension A of S, we have by (4.2) for each selfadjoint extension Ã of S

[
ˆ̃
Rzu, u]± = [R̂zu, u]±, z ∈ ρ(A) ∩ ρ(Ã),

i.e. there exists, up to real additive constants, exactly one generalized u-resolvent.

Definition 4.8. Let u ∈ P− with ru(S) 6= ∅, and let A be a canonical selfadjoint extension

of S. Choose a generalized u-resolvent r(z) of S induced by A, and a Q-function q(z) of A

and S. Define a matrix valued function

W (z) =

(
w11(z) w12(z)
w21(z) w22(z)

)
, z ∈ ru(S) ∩ ρ(A),

by

w11(z) =
r(z)[

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

, (4.4)

w12(z) =

r(z)q(z) −

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(z)
zϕ(z)

)
, u

]

±[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

, (4.5)

w21(z) =
1[

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

, (4.6)

w22(z) =
q(z)[

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

. (4.7)

The matrix W (z) depends on the choice of A, q(z) and r(z). If we choose another
generalized u-resolvent induced by A: r′(z) = r(z)+β, β ∈ R, then the matrix W ′(z) defined

correspondingly satisfies

W ′(z) =

(
1 β
0 1

)
W (z), z ∈ ru(S) ∩ ρ(A). (4.8)

If we choose another Q-function: q′(z) = q(z) + β, β ∈ R, then

W ′(z) = W (z)

(
1 β
0 1

)
, z ∈ ru(S) ∩ ρ(A). (4.9)



Moreover, it follows from Proposition 4.1 by a straightforward computation, that if A′ is
another canonical selfadjoint extension of S, r′(z) is a conveniently chosen generalized u-

resolvent of S induced by A′, q′(z) is a Q-function of A′ and S, and W ′(z) is defined corre-
spondingly, then

W ′(z) = W (z)

(
τ

q(z0)+τ
−(q(z0) + τ)

1
q(z0)+τ

0

)
, z ∈ ru(S) ∩ ρ(A) ∩ ρ(Ã). (4.10)

Here τ ∈ R is the parameter corresponding to A′ in the Krein formula (2.4).

By Lemma 2.1 this implies that for any choice of A and r(z), the matrix function
W (z) defined above has an analytic continuation to ru(S). We will always understand W (z)

as an analytic function on ru(S). Note that, if z, z ∈ ru(S), we have

W (z)JW (z)∗ = J,

with

J =

(
0 −1
1 0

)
, (4.11)

and that

detW (z) =

[(
ϕ(z)
zϕ(z)

)
, u

]

±[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

.

In particular detW (z) 6= 0 if z, z̄ ∈ ru(S), and detW vanish identically if and only if ru(S)
is contained in one half plane.

Theorem 4.9. The matrix W (z) given in Definition 4.8 is a generalized u-resolvent matrix
of S. Let κ̃ ≥ κ, then for any τ ∈ Ñκ̃−κ

r(z) = (W ◦ τ)(z)

is a generalized u-resolvent of index κ̃. Any generalized u-resolvent of index κ̃ can be repre-

sented in this way up to a real additive constant.
Proof : In the definition of W (z) write r(z) = γ + [R̂zu, u]±. Consider the generalized

u-resolvent [
ˆ̃
Ru, u]± of S induced by a P-minimal extension Ã, and denote by τ(z) the

parameter corresponding to Ã by the Krein formula. Due to (4.2) we have for z ∈ ρ(A) ∩
ρ(Ã) ∩ ru(S)

[
ˆ̃
Rzu, u]± = [R̂zu, u]± −

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(z)
zϕ(z)

)
, u

]

±

q(z) + τ(z)
+ β(Ã) =

=

r(z)τ(z) + r(z)q(z) −

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(z)
zϕ(z)

)
, u

]

±

q(z) + τ(z)
+ β(Ã) − γ =



=
w11(z)τ(z) + w12(z)

w21(z)τ(z) + w22(z)
+ β(Ã) − γ

where

β(Ã) =

[
u,

(
ϕ(z0)
z0ϕ(z0)

)]

±

2(q(z0) + τ(z0))

[(
ϕ(z0)
z0ϕ(z0)

)
, u

]

±

+

+

[
u,

(
ϕ(z0)
z0ϕ(z0)

)]

±

2(q(z0) + τ(z0))

[(
ϕ(z0)
z0ϕ(z0)

)
, u

]

±

.

A 2 × 2-matrix is called (iJ)-unitary if

UJU∗ = J. (4.12)

Note that with U also U∗ is (iJ)-unitary. Moreover, it follows from the fact that a matrix U
is (iJ)-unitary if and only if | detU | = 1 and the fractional linear transformation U ◦ z maps

the upper half plane onto itself, that the relation σ = U ◦τ establishes a bijection of Nκ onto
itself. Hence the matrix W (z)U is a generalized u-resolvent matrix whenever W (z) has this

property. Note that the matrices occuring on the right hand sides of (4.9) and (4.10) are

(iJ)-unitary. Clearly, for any generalized u-resolvent matrix W (z) and number β ∈ R, the
matrix defined by the right hand side of (4.8) also is a generalized u-resolvent matrix. Under

a certain additional assumption also a converse result holds. Before we prove this converse,
we provide a lemma which can be proved by an elementary calculation.

Lemma 4.10. Consider a matrix

W =

(
w11 w12

w21 w22

)
∈ C

2×2,

and assume that detW 6= 0 and w21 6= 0. The fractional linear transformation W ◦ z maps

the real line onto the circle with radius

r =

∣∣∣∣
detW

w21w22 − w21w22

∣∣∣∣ ,

and center

C =
w11w22 − w12w21

w21w22 − w21w22
.

This circle is in fact a straight line if and only if w21w22 −w21w22 = 0. Otherwise, the upper
half plane is mapped onto the interior of this circle if and only if

Im
w22

w21

> 0.

Theorem 4.11. Let W1(z) and W2(z) be generalized u-resolvent matrices of S. Assume
ru(S)∩C+ 6= ∅, ru(S)∩C− 6= ∅ and that there exists a positive defect element of S. Then there



exist an (iJ)-unitary matrix U , a number β ∈ R, and a function γ(z) which is meromorphic
and not identically zero on ru(S), such that

W2(z) = γ(z)

(
1 β
0 1

)
W1(z)U, z ∈ ru(S).

Proof : Let W1(z) be a generalized u-resolvent matrix of S and let W (z) be as in Definition
4.8. Then for each τ ∈ Ñ0 there exists a function σ(τ) ∈ Ñ0 and a number α(τ) ∈ R, such

that
W1(z) ◦ σ(τ) = W (z) ◦ τ + α(τ), z ∈ ru(S). (4.13)

The fractional linear transformation W (z) ◦w maps C+ onto the interior (exterior) of some
circle Kz. By our assumtions on S there exists a number z0 ∈ ru(S)∩C+, such that Kz0

has

a finite nonzero radius and C+ is mapped onto the interior of Kz0
. Let O 6= ∅ be an open

set containing z0 such that Kz has finite and nonzero radius for all z ∈ O. If the radius of

Kz is not constant on O, assume moreover that the radius of Kz0
is not a local minimum of

the radii in O.

In (4.13) we can choose τ(z) = τ ∈ C+ ∪ R and, conversely, any constant function
σ(z) = σ ∈ C+ ∪ R can be obtained by some choice of τ(z). Since the number α in (4.13)

is real, each point of Kz lies on the same horizontal line as some point of Kz,1. Hence the
transformation W1(z) ◦w maps C+ ∪R onto the interior of a circle Kz,1. For z = z0 we have

the following picture:

-
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W1(z0)◦σ(τu)

Kz0,1

W1(z0)◦σ(τo)

W (z0)◦τu

Kz0

W (z0)◦τo

Here τo, τu ∈ R are constants. The corresponding functions σ(τo) and σ(τu) assume a real
value at z0. Hence they are also real constants. Clearly α(τo) = α(τu).

Consider the transformation VW (z) ◦ w with

V =

(
1 −α(τo)
0 1

)
,

and let Kz,2 be the image of C+ ∪ R under this transformation. Then Kz0,1 = Kz0,2. Since

α(τ) does not depend on z the points p1(z) = VW (z)◦τo and p2(z) = VW (z)◦τu are located
on the boundary of all circles Kz,1 and Kz,2 for z ∈ O. Since, by (4.13), the circles Kz,1

and Kz,2 have the same radius and their centers lie on a horizontal line, they must coincide

unless the line segment connecting p1(z) and p2(z) is vertical.
Assume on the contrary that they do not coincide on O. Since by analyticity the

function p1(z) − p2(z) is constant, we find that the diameter of Kz,2 cannot be smaller than
|p1(z0) − p2(z0)|. By the choice of z0 this implies that the diameter of Kz,2 is constant, in

fact equal to |p1(z0)−p2(z0)|. Since a circle is uniquely determined by two antipodal points,
the circles Kz,2 and Kz,1 must coincide, a contradiction.



We arrive at the conclusion that Kz,1 = Kz,2 for z ∈ O, hence the fractional linear
transformation [VW (z)]−1W1(z) ◦ w maps C+ onto itself and depends analytically on z.

This implies that it is of the form γ(z)U with some (iJ)-unitary matrix U and an analytic
function γ(z), z ∈ O (compare [S1]).

Since ru(S) ∩ C+ is connected, it follows by analyticity that γ(z) can be extended
meromorphically to ru(S) ∩ C+ and that

W1(z) = γ(z)VW (z)U, z ∈ ru(S) ∩ C
+.

Let z ∈ ru(S) ∩ C−, then

W1(z) ◦ τ = r(z) = r(z) = W1(z) ◦ τ,

where W1 denotes the conjugate (but not transpose) of the matrix W1. This implies that

the fractional linear transformations W1(z) ◦ w and W1(z̄) ◦ w are identical, hence W1(z) =
α(z)W1(z̄), where α(z) depends analytically on z ∈ C− ∩ ru(S).

From this relation, the definition ofW (z) and the fact that V and U are (iJ)-unitary,
we find

W1(z) = α(z)W1(z) = α(z)γ(z)VW (z)U =

=

(
λα(z)γ(z)

[u, ϕ(z)]

[ϕ(z), u]

)
VW (z)U, z ∈ ru(S) ∩ C

−.

Here λ is such that U = λU . The existence of such a number λ is proved by an elementary

consideration.

5 Representations by spaces of analytic functions

Choose an element u ∈ P−, such that ru(S) 6= ∅. Let A be a canonical selfadjoint extension
of S, ρ(A) 6= ∅, and denote by ϕ(z) defect elements of S connected with A by (4.3). Denote

by P(z), z ∈ ru(S) ∩ ρ(A), the linear functional on P defined by

P(z)f =
[f, ϕ(z̄)][

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

, f ∈ P. (5.1)

Moreover, denote by Q(z), z ∈ ru(S) ∩ ρ(A) the linear functional on P defined by

Q(z)f = [R+
z f, u]± − (P(z)f)r(z), f ∈ P, (5.2)

where r(z) denotes a fixed generalized u-resolvent induced by A. Clearly, P(z) and Q(z)
do not depend on the choice of the defect elements ϕ(z). Moreover, if we choose another

generalized u-resolvent induced by A, then Q(z) is changed only by adding a real multiple
of P(z).



Lemma 5.1. The functionals P(z) and Q(z) have an analytic continuation to ru(S). If
Ã is another canonical selfadjoint extension of S and P̃(z) and Q̃(z), z ∈ ru(S) ∩ ρ(Ã), are

defined similar as P and Q with Ã instead of A, and with the generalized u-resolvent r̃(z)
induced by Ã, such that

r̃(z) = r(z) −

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(z)
zϕ(z)

)
, u

]

±

q(z) + τ
,

where τ = τ(z) and q(z) are as in the Krein formula, then

P̃(z)f = P(z)f, f ∈ P, z ∈ ru(S) ∩ ρ(A) ∩ ρ(Ã),

and
Q̃(z)f = Q(z)f, f ∈ P, z ∈ ru(S) ∩ ρ(A) ∩ ρ(Ã). (5.3)

Proof : Clearly P(z) and Q(z) are analytic functions on ru(S) ∩ ρ(A). Hence, the first
assertion will follow once we have proved that P and Q do not essentially depend on the

choice of A.
Let f ∈ P. Since P(z)f is the unique number, such that

ιf − (P(z)f)u ∈ ker (

[
.,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

),

and the kernel of the functional

[
.,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

does not depend on the choice of A, also

P(z)f does not depend on A.
By the Krein formula (2.4), there corresponds to Ã a parameter τ(z) = τ ∈ R. By

(3.7) and (4.2) we find

Q̃(z)f = [R+
z f, u] − (P(z)f)r(z) −

[f, ϕ(z̄)]

[(
ϕ(z)
zϕ(z)

)
, u

]

±

q(z) + τ
+

+(P(z)f)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(z)
zϕ(z)

)
, u

]

±

q(z) + τ
= Q(z)f. (5.4)

We will always consider P(z) and Q(z) as analytic functions on ru(S). In the following we
assume that for u ∈ P− the minimality condition

cls ({ϕ(z) : z ∈ ρ(A)} ∪ {R−
z u : z ∈ ρ(A)}) = P. (5.5)

is satisfied. Note that by (3.8) this condition does not depend on the choice of A.



Let Φ be the mapping, which assings to each f ∈ P the analytic vector function

Φ(f) = f(z) =

(
−Q(z)f
P(z)f

)
, z ∈ ru(S).

If ru(S) has a nonvoid intersection with both halfplanes, then by (5.5) the mapping Φ is
injective.

Definition 5.2. Let u ∈ P− be such that ru(S) ∩ C+ 6= ∅, ru(S) ∩ C− 6= ∅ and assume
that (5.5) holds. Denote by Pu the Pontryagin space of vector functions analytic on ru(S)

Pu = Φ(P) =

{
f(z) =

(
−Q(z)f
P(z)f

)
: f ∈ P

}
,

endowed with the inner product

[f(z), g(z)]Pu
= [f, g]P.

Clearly, the mapping Φ is an isomorphism from P onto Pu. Let π− be the projection

of Pu onto its second component. In the space Pu define a linear relation Sm by

Sm =
{
(f(z); g(z)) ∈ P2

u : (π−g)(z) = z(π−f)(z)
}
. (5.6)

Let J be as in (4.11), and denote by R1(a) the difference quotient

R1(a)f(z) =
f(z) − f(a)

z − a
.

Theorem 5.3. Assume that ru(S) has a nonvoid intersection with both halfplanes. Then
via the isomorphism Φ, the relation S corresponds to the subset of Sm determined by

(Φ(S) − a)−1 = R1(a)|{f∈Pu:(π−f)(a)=0}.

If a ∈ ru(S), then
R1(a)f(z) ∈ Pu, f(z) ∈ Pu.

The operator R1(a) : Pu → Pu is the resolvent operator of a certain linear relation extending
Sm. In particular it depends continuously on f ∈ Pu and (in the operator norm of Pu)

analytically on a ∈ ru(S). For f , g ∈ Pu, a, b ∈ ru(S) the following identity holds:

g(b)∗Jf(a) = [f(z),R1(b)g(z)] − [R1(a)f(z), g(z)] + (a− b̄)[R1(a)f(z),R1(b)g(z)].

Proof : We first show that Pu is invariant under forming difference quotients. Assume that

a ∈ ρ(A), and consider the element R−
a (ιf − (P(a)f)u) ∈ P. Since

R+
a ϕ(z) =

(
ϕ(z)−ϕ(a)

z−a
zϕ(z)−aϕ(a)

z−a

)
, (5.7)



we have

P(z)(R−
a (ιf − (P(a)f)u)) =

[R−
a (ιf − (P(a)f)u), ϕ(z̄)][

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

=

=

[
ιf − (P(a)f)u,

(
ϕ(z̄)−ϕ(ā)

z̄−ā
z̄ϕ(z̄)−āϕ(ā)

z̄−ā

)]

±[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

=
(P(z)f) − (P(a)f)

z − a
.

The relation (3.2) implies that

R+
z R

−
a =

1

z − a

(
R−

z − R−
a

(I + zR−
z ) − (I + aR−

a )

)
=
R̂z − R̂a

z − a
(5.8)

and, since R−
z ι = (A− z)−1, we find

Q(z)(R−
a (ιf − (P(a)f)u)) =

= [R+
z R

−
a (ιf − (P(a)f)u), u]± −P(z)(R−

a (ιf − (P(a)f)u))r(z) =

=
[R+

z f, u]± − [R+
a f, u]± − (P(a)f)r(z) + (P(a)f)r(a)

z − a
−

−
(P(z)f) − (P(a)f)

z − a
r(z) =

(Q(z)f) − (Q(a)f)

z − a
.

This shows that

R1(a)f(z) =
f(z) − f(a)

z − a
= Φ(R−

a (ιf − (P(a)f)u)),

in particular the difference quotient is contained in Pu and depends continuously on a. If
a ∈ ru(S) \ ρ(A), the assertion follows from the already proved fact, by a convenient choice

of another canonical selfadjoint extension Ã and use of Lemma 5.1. Clearly, R1 satisfies
the resolvent identity. Hence it is the resolvent of a certain linear relation which obviously

extends Φ(S).
To prove the asserted identity for difference quotients we calculate (a, b ∈ ru(S) ∩

ρ(A))
[f, R−

b (ιg − (P(b)g)u)] − [R−
a (ιf − (P(a)f)u), g]+

+(a− b̄)[R−
a (ιf − (P(a)f)u), R−

b (ιg − (P(b)g)u)] =

= [((A− b̄)−1 − (A− a)−1)f, g] + (a− b̄)[(A− b̄)−1(A− a)−1f, g]−

−(P(b)g)[f, R−
b u] + (P(a)f)[R−

a u, g] − (a− b̄)(P(a)f)[(A− b̄)−1R−
a u, g]−

−(a− b̄)(P(b)f)[(A− a)−1R+
b f, u]± + (a− b̄)(P(a)f)(P(b)f)[R+

b̄
R−

a u, u]± =

= (P(a)f)([R−
b̄
u, g] − (P(b)f)r(b)) − (P(b)f)([f, R−

a u] − (P(a)f)r(a)) =



=

(
−Q(b)
P(b)

)∗

J

(
−Q(a)
P(a)

)
.

For arbitrary a, b ∈ ru(S) the identity now follows by continuity.

Finally we show that S corresponds to a subset of Sm via Φ. Let f ∈ P and
a ∈ ru(S) ∩ ρ(A), then f ∈ ran (S − a) if and only if P(a)f = 0. Hence

R−
a (ιf − (P(a)f)u) = R−

a ιf = (S − a)−1f.

The first part of this proof shows that

Φ(S − a)−1 = {(f(z);
f(z) − f(a)

z − a
) ∈ P2

u : (π−f)(a) = 0},

which yields the desired result.

In the sequel we will show that the space Pu is a reproducing kernel space, and that its

reproducing kernel is in fact given by

W (z)JW (w)∗ − J

z − w̄
, z, w ∈ ru(S), (5.9)

where W (z) is as in Definition 4.8.

Theorem 5.4. For z, w ∈ ru(S) we have

W (z)JW (w)∗ − J

z − w̄
=

(
−Q(z)
P(z)

)
(−Q(w)∗,P(w)∗). (5.10)

Moreover, if ru(S) has a nonvoid intersection with both halfplanes, then for each

vector

(
x
y

)
∈ C2 and each number w ∈ ru(S) the function

W (z)JW (w)∗ − J

z − w̄

(
x
y

)
, z ∈ ru(S),

belongs to Pu, and for all f ∈ Pu we have

[
f(z),

W (z)JW (w)∗ − J

z − w̄

(
x
y

)]
=

(
x
y

)∗

f(w), z, w ∈ ru(S). (5.11)

Proof : For w ∈ ru(S) the functions

f 7→ P(w)f, f 7→ Q(w)f, f ∈ P,

are bounded linear functionals on P. Their adjoints are given by

P(w)∗ξ = ξ
1[(

ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

ϕ(w̄), ξ ∈ C,



Q(w)∗ξ = ξ(R−
w̄u−

r(w̄)[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

ϕ(w̄)), ξ ∈ C.

First we prove (5.10). In fact by (5.7) and (5.8)

Q(z)Q(w)∗ =
r(w̄)r(z)[ϕ(w̄), ϕ(z̄)][

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

+

+[R+
z R

−
w̄u, u] −

r(w̄) [R+
z ϕ(w̄), u]±[(

ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

−
r(z)[u,R+

wϕ(z̄)]±[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

=

=
r(w̄)r(z)q(z) − r(w̄)r(z)q(w̄)

(z − w̄)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

−

r(w̄)

[(
ϕ(z)
zϕ(z)

)
, u

]

±

(z − w̄)

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]+

+

r(z)

[
u,

(
ϕ(w)
wϕ(w)

)]

±

(z − w̄)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)] =
w12(z)w11(w) − w11(z)w12(w)

z − w̄
,

−P(z)Q(w)∗ = −
[R−

w̄u, ϕ(z̄)][
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)] +
r(w̄)[ϕ(w̄), ϕ(z̄)][

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

=

= −
1

z − w̄
+

[
u,

(
ϕ(w)
wϕ(w)

)]

(z − w̄)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]+

+
r(w̄)q(z) − r(w̄)q(w̄)

(z − w̄)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

=

=
w22(z)w11(w) − w21(z)w12(w) − 1

z − w̄
,

−Q(z)P(w)∗ = −
[R+

z ϕ(w̄), u][(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

] +
r(z)[ϕ(w̄), ϕ(z̄)][

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

=

=
1

z − w̄
−

[(
ϕ(z)
zϕ(z)

)
, u

]

(z − w̄)

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]+



+
r(z)q(z) − r(z)q(w̄)

(z − w̄)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

=

=
w12(z)w21(w) − w11(z)w22(w) + 1

z − w̄
,

P(z)P(w)∗ =
[ϕ(w̄), ϕ(z̄)][

u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

=

=
w22(z)w21(w) − w21(z)w22(w)

z − w̄
.

As for each w ∈ ru(S) and x, y ∈ C the elements P(w)∗x and Q(w)∗y belong to P, relation

(5.10) implies that
W (z)JW (w)∗ − J

z − w̄

(
x
y

)
, w ∈ ru(S),

belongs to Pu as a function of z. Relation (5.10) also shows that (5.11) holds.

6 Matrices of the class Mκ

Definition 6.1. Let κ ∈ N ∪ {0}. A 2 × 2-matrix function M(z) defined and analytic in

some open set O, which is not constant, is said to belong to the class Mκ if it satisfies

M(z)JM(z̄)∗ = J, z, z̄ ∈ O, (6.1)

and if the kernel
M(z)JM(w)∗ − J

z − w̄
, z, w ∈ O, (6.2)

has exactly κ negative squares.

If U is (iJ)-unitary, then M(z)U and UM(z) belong to Mκ whenever M(z) has
this property.

Due to (5.10) the matrix function W (z) given in Definition 4.8, hence also VW (z)U
with (iJ)-unitary matrices U and V , belongs to a class Mκ′ where κ′ ≤ Ind−P. Note that

from the already proved and (5.10) it follows that, if ru(S) has a nonvoid intersection with
both halfplanes, in fact κ′ = Ind−P. It will follow from Theorem 6.5 that κ′ = Ind−P in

general.
We shall show in the sequel that every matrix of the class Mκ can be written as

VW (z)U with W as in Definition 4.8.
In order to study matrices of the class Mκ it is convenient to consider the so called

Potapov-Ginzburg transfomation. Recall that, if M(z) is a 2 × 2-matrix function

M(z) =

(
m11(z) m12(z)
m21(z) m22(z)

)
,



and m21(z) does not vanish identically, its Potapov-Ginzburg transform Ψ(M)(z) is defined
by

Ψ(M)(z) =

(
m11(z)
m21(z)

m11(z)m22(z)−m21(z)m12(z)
m21(z)

1
m21(z)

m22(z)
m21(z)

)
.

The following result has been proved e.g. in [Br].

Lemma 6.2. The Potapov-Ginzburg transformation satisfies (Ψ ◦ Ψ)(M) = M . The
function M(z) satisfies (6.1) if and only if

Ψ(M)(z̄) = [Ψ(M)(z)]∗.

Moreover, the kernel relation
M(z)JM(w)∗ − J

z − w̄
= (6.3)

(
−1 m11(z)
0 m21(z)

)
Ψ(z) − Ψ(w)∗

z − w̄

(
−1 m11(w)
0 m21(w)

)∗

holds. Hence M ∈ Mκ if and only if Ψ(M)(z) ∈ N 2
κ .

Lemma 6.3. Let M ∈ Mκ be given. Then there exist (iJ)-unitary matrices U and V ,

such that the left lower entry of V −1M(z)U−1 does not vanish identically and that not both
off-diagonal entries and the lower right entry of Ψ(V −1MU−1)(z) are constant.

Proof : First we arrange, by multiplying M(z) from the left and right with appropriate
(iJ)-unitary matrices U1 and U2, that the left lower entry of U1M(z)U2 does not vanish

identically. If already m21 6= 0 put U1 = U2 = I. If m21 = 0 and m22 6= 0 choose

U1 = I and U2 =

(
1 0
1 1

)
.

If m21 = m22 = 0 choose

U1 =

(
1 0
1 1

)
,

and U2 = I or U2 = U1 depending whether m11 6= 0 or m11 = 0. Remember that, since M is
not constant some entry does not vanish identically.

Next we arrange that at least one of the off-diagonal and lower right entries of the
Potapov-Ginzburg transform Ψ(U1MU2)(z) is not constant. If this is already the case we

set U3 = I. If these entries of Ψ(U1MU2) are constant, we conclude by the fact that M itself
is not constant, that m11 is not constant. Choose

U3 =

(
1 1
0 1

)
,

and consider the matrix U1M(z)U2U3. It follows that the upper right entry of Ψ(U1MU2U3)(z)

is not constant.



Finally we set V = U−1
1 and U = (U2U3)

−1 which proves the assertion of the lemma.

We apply the Potapov-Ginzburg transformation in particular to the matrix function

W (z) of Definition 4.8.

Lemma 6.4. The matrix function W (z) given in Definition 4.8 is the Potapov-Ginzburg

transformation of

Q(z) =




r(z)

[(
ϕ(z)
zϕ(z)

)
, u

]

±[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

q(z)


 , z ∈ ρ(A).

The Nevanlinna kernel of Q(z) can be written as

Q(z) −Q(w)∗

z − w̄
=

(
[γ(z), γ(w)] [ϕ(z), γ(w)]
[γ(z), ϕ(w)] [ϕ(z), ϕ(w)]

)
, z, w ∈ ρ(A), (6.4)

where γ(z) = R−
z u.

Proof : It is obvious that W (z) is the Potapov-Ginzburg transformation of Q(z). We

calculate the off-diagonal entries of the Nevanlinna kernel of Q(z) using (5.7):
[(

ϕ(z)
zϕ(z)

)
, u

]

±

−

[(
ϕ(w̄)
w̄ϕ(w̄)

)
, u

]

±

z − w̄
= [R+

w̄ϕ(z), u]± = [ϕ(z), γ(w)],

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

−

[
u,

(
ϕ(w)
wϕ(w)

)]

±

z − w̄
= [u,R+

z̄ ϕ(w)]± = [γ(z), ϕ(w)].

The assertion concerning the diagonal entries follows from Proposition 4.5 and (2.3).

Theorem 6.5. Let a 2 × 2-matrix valued function

M(z) =

(
m11(z) m12(z)
m21(z) m22(z)

)
, z ∈ O,

be given, and assume that M(z) ∈ Mκ. Then there exists a Pontryagin space P with
negative index κ, a symmetric relation S ⊆ P2 with defect index (1, 1), a canonical selfadjoint

extension A of S with ρ(A) 6= ∅, an element u ∈ P−, and (iJ)-unitary matrices U and V ,
such that ru(S) ∩O 6= ∅ and

M(z) = VW (z)U, z ∈ ru(S) ∩ O, (6.5)



where W (z) is a generalized u-resolvent matrix as in Definition 4.8.
If m21 or m22 does not vanish identically, we can choose V = I. If m21 6= 0 and one

of m21, m22, detM is not constant, we can choose V = U = I. In this case, if P is chosen
minimal in the sense of (5.5), then P, S, A and u are uniquely determined up to unitary

equivalence by the requirement M(z) = W (z).
Proof : Choose (iJ)-unitary matrices U and V as in Lemma 6.3, and consider the Potapov-

Ginzburg transform Q(z) = Ψ(V −1MU−1)(z). By Lemma 6.2 we have Q(z) ∈ N 2
κ . It is

well known (see [HSW]) that there exists a Pontryagin space P with negative index κ, a
selfadjoint relation A with nonempty resolvent set, and functions

γ, ϕ : ρ(A) → P

satisfying (2.2) such that

Q(z) −Q(w)∗

z − w̄
=

(
[γ(z), γ(w)] [ϕ(z), γ(w)]
[γ(z), ϕ(w)] [ϕ(z), ϕ(w)]

)
, z, w ∈ ρ(A). (6.6)

Moreover, the space P can be chosen minimal in the sense that

cls ({ϕ(z) : z ∈ ρ(A)} ∪ {γ(z) : z ∈ ρ(A)}) = P.

Then the space P, the relation A, and the mappings γ(z) and ϕ(z) are determined uniquely
by Q(z) up to unitary equivalence.

The functions ϕ(z) and γ(z) do not vanish identically. Let S be the symmetric
restriction of A with defect index (1, 1) given by

S = {(f ; g) ∈ A : g − zf ⊥ ϕ(z)}.

By Lemma 4.3 we can choose u′ ∈ P− such that R−
z u

′ = γ(z). By Lemma 6.4 the matrix

function

Q′(z) =




r′(z)

[(
ϕ(z)
zϕ(z)

)
, u′
]

±[
u′,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

q′(z)


 , z ∈ ρ(A),

where r′(z) is a generalized u-resolvent induced by A, and q′(z) is a Q-function of A and S
and satisfies (6.6).

Since (6.6) determines Q(z) up to an additive constant hermitian matrix, we may
write by Corollary 4.4 for some h ∈ V −1(P+⊖A) and u = u′+h, some generalized u-resolvent

r(z) and some Q-function q(z)

Q(z) =




r(z)

[(
ϕ(z)
zϕ(z)

)
, u

]

±[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

q(z)


 , z ∈ ρ(A).

Since M is analytic in O, the left lower entry of Q = Ψ(V −1MU−1) cannot vanish for any

z ∈ O. Hence ru(S) contains O \ σ(A). The relation (6.5) holds with W (z) as in Definition
4.8, and U and V as in Lemma 6.3.



If U = V = I and if the minimality condition (5.5) is satisfied, then, as mentioned
above, the space P, the relation A, and the mappings γ(z) and ϕ(z) are uniquely determined

up to unitary equivalence by Q(z), and hence by M(z). Moreover, S is uniquely determined
by A and ϕ(z), and the element u is uniquely determined by γ(z) and the requirement that[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

is the left lower entry of Ψ(M)(z).

Corollary 6.6. Let a 2×2-matrix valued function M(z), z ∈ O, be given, and assume that

M(z) ∈ Mκ. If O ∩ C+ 6= ∅ (O ∩ C− 6= ∅), the function M(z) has an analytic continuation
to C+ (C−) with possible exception of an isolated set. This continuation still belongs to Mκ.

The function M(z) can in fact be extended to C \ R (with possible exception of an isolated

set) maintaining the property to belong to Mκ, if and only if its determinant does not vanish
identically.

For a matrix function M ∈ Mκ we denote by ρ(M) its maximal domain of analyt-
icity. Consider the reproducing kernel space K(M) which is generated by the kernel (6.2).

The space K(M) is a Pontryagin space with negative index κ. The elements of K(M) are
pairs of functions analytic on ρ(M). Together with the results of the previous section we

find:

Corollary 6.7. Let M ∈ Mκ be given, assume that detM does not vanish identically and

that one of m21, m22, detM is not constant. Then we can choose in Theorem 6.5 for P and
S the space K(M) and the relation S defined by

(S − a)−1 = R1(a)|{f∈K(M):(π−f)(a)=0}.

It follows that the difference quotient operator

R1(a)f(z) =
f(z) − f(a)

z − a
, f ∈ K(M),

leaves K(M) invariant, and in fact is the resolvent operator of a relation extending S. In

particular it depends continuously on f and (in the operator norm of K(M)) analytically on

a ∈ ρ(M).

7 Generalized resolvent matrices of symmetric exten-

sions

In this section we consider the following situation: Let (P, [., .]) and (P1, [., .]1) be Pontryagin

spaces and let S ⊆ P2 and S1 ⊆ P2
1 be symmetric relations, both with defect index (1, 1).

Assume that P ⊆ P1 (including [., .]1|P2 = [., .]) and S ⊆ S1.

Choose a maximal negative subspace Q of P and denote by (., .) the positive definite
inner product induced by the fundamental symmetry associated with Q. Let R be a maximal



negative subspace of the Pontryagin space P1 ⊖[.,.]1 P, and put Q1 = Q[+̇]R. Then Q1 is a
maximal negative subspace of P1, hence gives rise to a fundamental symmetry of P1 which

in turn induces a positive definite inner product (., .)1.
Construct Hilbert spaces P+,P−,P1,+ and P1,− as in Section 3, using the inner

products just introduced. Moreover, denote by V, V1, π, π1 etc. the respective mappings for
the spaces P and P1. Some basic properties of the introduced notions are collected in the

following lemma. Denote by P1 the [., .]1-orthogonal projection of P1 onto P.

Lemma 7.1. The inner product (., .)1 extends (., .). The projection P1 is orthogonal with
respect to (., .)1, i.e.

P1 ⊖(.,.)1 P = P1 ⊖[.,.]1 P.

We have

(P1 ⊕ P1)P1,+ ⊆ P+. (7.1)

Put P ′
1 = V −1

1 (P1 ⊕ P1)
∗V where the adjoint has to be understood with respect to the inner

products of P1,+ and P+. If h ∈ P, u ∈ P− and

(
f
g

)
∈ P1,+, we have

[P ′
1u,

(
f
g

)
]1,± = [u, (P1 ⊕ P1)

(
f
g

)
]±, (7.2)

and

[P ′
1ιh,

(
f
g

)
]1,± = [h, f ]1. (7.3)

In order to visualize the introduced spaces and mappings consider the following

diagram:

P+

P

P−

P1,+

P1

P1,−

⊆

S
S

So

S
S

So

�
�
�7

�
�
�7

??
-

-

V V1

P ′

1

(P1⊕P1)∗

ι ι1

π π1

Proof : [of Lemma 7.1] The first assertion follows immediately from the fact that the

fundamental symmetry of P1 used above leaves P invariant. The relation (7.1) holds, as

S∗
1 ⊆ S∗[+̇](P1 ⊖[.,.]1 P)2. (7.4)

Note that S∗[+̇](P1 ⊖[.,.]1 P)2 is the adjoint relation of S in P2
1.

If u ∈ P− and

(
f
g

)
∈ P1,+ we compute

[P ′
1u,

(
f
g

)
]1,± = [(V −1

1 (P1 ⊕ P1)
∗V )u,

(
f
g

)
]1,± = ((P1 ⊕ P1)

∗V u,

(
f
g

)
)1,+ =



= (V u, (P1 ⊕ P1)

(
f
g

)
)+ = [u, (P1 ⊕ P1)

(
f
g

)
]±.

If h ∈ P, then

[P ′
1ιh,

(
f
g

)
]1,± = [ιh, (P1 ⊕ P1)

(
f
g

)
]± = [h, P1f ] = [h, f ]1.

Denote by r(S, S1) the set

r(S, S1) = {z ∈ r(S1) : P 6⊆ ran (S1 − z)}.

For a selfadjoint extension A1 ⊆ P2
1, ρ(A1) 6= ∅, denote by ϕ1(z) the defect elements of S1

connected with A1 by (2.2). Note in this place that r(S) ⊇ r(S1).

Lemma 7.2. If r(S, S1)∩C+ 6= ∅, then r(S, S1) contains r(S1)∩C+ with possible exception
of a set isolated in r(S1) ∩ C+. The same assertion holds with C+ replaced by C−. For

z ∈ r(S, S1) we have

P1(ran (S1 − z)[⊥]) = ran (S − z)[⊥]. (7.5)

Moreover, if u ∈ P1, then

ru(S) ∩ r(S, S1) = rP ′

1
u(S1) ∩ r(S, S1). (7.6)

Proof : Assume that r(S1) \ r(S, S1) has an accumulation point z0 in r(S1) ∩ C+. Choose

a selfadjoint extension A1 of S1 with z0 ∈ ρ(A1) and let f ∈ P. The function [f, ϕ1(z)]
is analytic on ρ(A1) and vanishes on a set with accumulation point z0. Hence it vanishes

identically on ρ(A1) ∩ C+. Since f ∈ P was arbitrary, we obtain P ⊆ ran (S1 − z) for all
z ∈ ρ(A1) ∩ C+. By a convenient choice of other selfadjoint extensions of S1 we find that

P ⊆ ran (S1 − z), even for z ∈ r(S1) ∩ C+.

Let z ∈ r(S, S1)∩ρ(A1), then ϕ1(z) 6∈ P⊖[.,.]1 P, i.e. P1ϕ1(z) 6= 0. By (7.1) we have

0 6= P1ϕ1(z) ∈ ker (S∗ − z) = ran (S − z)[⊥].

The relation (7.6) follows from (7.2) applied to the particular case

(
f
zf

)
∈ P1,+ with

z ∈ r(S, S1) and f ∈ ran (S1 − z)[⊥].

We assume throughout the following that r(S, S1) has a nonvoid intersection with both
halfplanes.

Let A and A1 be canonical selfadjoint extensions of S and S1, respectively, which
have nonempty resolvent set. Note that, by the Krein formula, there corresponds a certain

parameter function τ(z) to A1, if A1 is considered as an extension of S. Let
ˆ̃
Rz be the

regularized generalized resolvent of S induced by A1 mapping P− into P+, and let R̂1,z be



the regularized resolvent of S1 induced by A1 mapping P1,− into P1,+. Now R̂1,z and
ˆ̃
Rz are

connected as follows:

Lemma 7.3. With the above notation we have

(P1 ⊕ P1)R̂1,zP
′
1 =

ˆ̃
Rz.

Proof : As in Section 3 we define R+
z : P̃ → P̃+, R

−
z : P̃− → P̃, and R̃+

z : P → P+,
R̃−

z : P− → P for the selfadjoint extension Ã = A1 of S acting in the space P̃ = P1.

Similarly, let R+
1,z : P1 → P1,+ and R−

1,z : P1,− → P1 be as in Section 3 with S (A, P)
replaced by S1 (A1, P1).

Note, that then jR+
1,z = R+

z . Here j is the inclusion map from P1,+ into P̃+.
Since P1 is the adjoint of the inclusion map P → P1, we have

P1R
−
1,zV

−1
1 (P1 ⊕ P1)

∗V = P1(R
+
1,z̄)

∗(P1 ⊕ P1)
∗V =

= ((P1 ⊕ P1)R
+
z̄ |P)∗V = (R̃+

z̄ )∗V = R̃−
z .

Hence

(P1 ⊕ P1)R̂1,zP
′
1 =


 P1R

−
1,z −

P1R−

1,z0
+P1R−

1,z0

2

zP1R
−
1,z −

z0P1R−

1,z0
+z0P1R−

1,z0

2


V −1

1 (P1 ⊕ P1)
∗V =

=


 R̃−

z −
eR−

z0
+ eR−

z0

2

zR̃−
z −

z0
eR−

z0
+z0

eR−

z0

2


 =

ˆ̃
Rz.

Let u ∈ P−. In the sequel let r(z) (r1(z)) be a generalized u- (P ′
1u-) resolvent of S (S1). By

Lemma 7.3 and Proposition 4.1 r(z) and r1(z) are connected by

r1(z) = r(z) −

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

[(
ϕ(z)
zϕ(z)

)
, u

]

±

q(z) + τ(z)
+ β,

for some β ∈ R. Let P(z) and Q(z) (P1(z) and Q1(z)) be defined by (5.1) and (5.2), where

the generalized u- (P ′
1u-) resolvent r(z) (r1(z)) is used. Moreover, let W (z) (W1(z)) be the

generalized u- (P ′
1u-) resolvent matrix of S (S1) introduced in Definition 4.8 using r(z) and

r1(z).

Theorem 7.4. Let P ⊆ P1 and S ⊆ S1 be given and assume that r(S, S1) ∩ C
+ 6= ∅ and

r(S, S1)∩C− 6= ∅. Let u ∈ P− be given and assume that ru(S)∩C+ 6= ∅ and ru(S)∩C− 6= ∅.
With the above notation we have

P1(z)f = P(z)f, Q1(z)f = Q(z)f − βP(z)f, f ∈ P, z ∈ ru(S) ∩ r(S, S1).



If β = 0, then there exists a matrix function M(z) ∈ Mκ1−κ, analytic on r(S, S1), such that

W1(z) = W (z)M(z), z ∈ r(S, S1).

The matrix function M(z) does not depend on the choice of u.
Before we prove Theorem 7.4 we need another lemma. Denote by ϕ(z) (ϕ1(z)) the

defect elements of S (S1) connected with A (A1).

Lemma 7.5. Let u, v ∈ P− and let z ∈ r(S, S1) ∩ ru(S) ∩ rv(S) ∩ ρ(A) ∩ ρ(A1). Then
[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[
P ′

1u,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

1,±

=

[
v,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[
P ′

1v,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

1,±

. (7.7)

Proof : The above assumptions imply that

span u+̇ker

[
.,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

= P−,

span v+̇ker

[
.,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

= P−.

Hence, there exists a unique number α(z) ∈ C \ {0}, such that u = α(z)v +m(z), for some

m(z) ∈ ker

[
.,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

. Then

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

= α

[
v,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±

and by (7.2) and (7.5) we find
[
P ′

1u,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

1,±

= α

[
P ′

1v,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

1,±

.

Proof : [of Theorem 7.4] The relation P1(z)f = P(z)f follows immediately from Lemma

7.5, if we note that the complement of r(S, S1) ∩ ru(S) ∩ rv(S) ∩ ρ(A) ∩ ρ(A1) in ru(S) is
isolated. The relation Q1(z)f = Q(z)f − βP(z)f follows by a similar computation as in

(5.4).
We define a matrix function M(z), analytic on the nonempty set {z ∈ ru(S) ∩

r(S, S1) : detW (z) 6= 0}, by
M(z) = W (z)−1W1(z).

By the first part of this proof the space Pu is contained in P1,P ′

1
u. Hence the orthogonal

projection of P1,P ′

1
u onto Pu maps the reproducing kernel of P1,P ′

1
u onto the reproducing

kernel of Pu. Since

W1(z)JW1(w)∗ − J

z − w̄

(
x
y

)
−
W (z)JW (w)∗ − J

z − w̄

(
x
y

)
=



= W (z)
M(z)JM(w)∗ − J

z − w̄
W (w)∗

(
x
y

)
, x, y ∈ C,

the matrix kernel

W (z)
M(z)JM(w)∗ − J

z − w̄
W (w)∗, z, w ∈ {z ∈ ru(S) ∩ r(S, S1) : detW (z) 6= 0}

is a reproducing kernel of P1,P ′

1
u ⊖ Pu. Hence M(z) ∈ Mκ1−κ.

It remains to prove that M(z) does not depend on u. If

M(z) =

(
m11(z) m12(z)
m21(z) m22(z)

)
, W (z) =

(
w11(z) w12(z)
w21(z) w22(z)

)
,

we find from

M(z) = W (z)−1W1(z) =

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[(
ϕ(z)
zϕ(z)

)
, u

]

±

(
w22(z) −w12(z)
−w21(z) w11(z)

)
W1(z),

that

m11(z) =
τ(z)

q(z) + τ(z)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[
P ′

1u,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

±

,

m12(z) =
τ(z)q1(z)

q(z) + τ(z)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[
P ′

1u,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

±

− q(z)

[(
ϕ1(z)
zϕ1(z)

)
, P ′

1u

]

±[(
ϕ(z)
zϕ(z)

)
, u

]

±

,

m21(z) =
1

q(z) + τ(z)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[
P ′

1u,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

±

,

m22(z) =
q1(z)

q(z) + τ(z)

[
u,

(
ϕ(z̄)
z̄ϕ(z̄)

)]

±[
P ′

1u,

(
ϕ1(z̄)
z̄ϕ1(z̄)

)]

±

+

[(
ϕ1(z)
zϕ1(z)

)
, P ′

1u

]

±[(
ϕ(z)
zϕ(z)

)
, u

]

±

.

By Lemma 7.5 M(z) does not depend on u. Since for all z ∈ r(S, S1) there exists u ∈ P−

such that z, z ∈ ru(S), M(z) has an analytic continuation to r(S, S1).
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[GG] M.L.Gorbachuk, V.I.Gorbachuk: M.G.Krein’s lectures on entire operators,

Oper. Theory Adv. Appl. 97, Birkhäuser Verlag, Basel 1997.
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