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The method of M.G. Krĕın and H. Langer to solve interpolation problems of Nevan-

linna-Pick type is explored. The classical Nevanlinna-Pick problem and a version involv-

ing derivatives are treated. The data give rise to an indefinite inner product space and a

symmetric operator in it. In general, the inner product space is degenerate.

1. Introduction

In this paper we consider some interpolation problems of Nevanlinna-Pick type
with data which are not necessarily positive definite. An approach to such prob-
lems was proposed by M.G. Krĕın and H. Langer [15], who adapted a construction
for the case of positive definite data by B. Sz.-Nagy and A. Koranyi [16, 17].
The method consists of constructing an indefinite inner product space and a sym-
metric linear operator or relation in it, so that the solutions of the particular
Nevanlinna-Pick problem correspond to selfadjoint extensions of the symmetric
operator. The construction of the indefinite inner product space can be given ab-
stractly [13, 14, 15, 16, 17] or via reproducing kernel spaces [3]. Several papers
have appeared, where this method was applied to similar situations under different
conditions on the data [1, 2, 7, 8, 9, 18]. The aim of our paper is expository: we
show in detail the basic ideas of the method in conjunction with some interpola-
tion problems. A similar approach with the Nevanlinna class on the upper half
plane replaced by the Schur class on the unit disk and with selfadjoint relations
replaced by unitary operators was discussed by J.A. Ball [5].

Some preliminary material about selfadjoint relations in Pontryagin spaces can
be found in Section 2, cf. [10, 11]. In Sections 3 and 4 the basic constructions asso-
ciated with such selfadjoint relations are presented [13, 14]. In Sections 5 and 6 we
consider the classical indefinite Nevanlinna-Pick problem and a version involving
derivatives. For each problem we associate a model, i.e. an indefinite inner prod-
uct space and a symmetric operator or relation to the prescribed data. There are
no restrictions on the data, so that the model spaces may be degenerate. We show
that the solutions of these interpolation problems are in one-to-one correspondence
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with the selfadjoint relations which extend the model operator. In a sequel to this
paper we will give parametrizations of the solutions in terms of resolvent matrices.
Also certain special types of solutions will be considered and a connection of our
results to the theory of Q-functions will be established. If the model space is non-
degenerate or even a Hilbert space solutions of the Nevanlinna-Pick interpolation
problems exist. In general, this need not be true and the existence of solutions
depends on the structure of the model.

A central role in this paper is played by functions belonging to the so-called
generalized Nevanlinna class. In order to define this class, we will introduce some
terminology and notations. Let H be a Hilbert space with inner product (·, ·). Let
f : C \ R → L(H) be a meromorphic function; its domain of holomorphy in C \ R

is denoted by ρ(f). The function f is called real, if for each z ∈ ρ(f) also z̄ ∈ ρ(f)
and f(z̄) = f(z)∗. Let ν, π ∈ N = N ∪ {0} ∪ {∞}, not both equal to ∞. Then
N

π
ν (H) is the set of all real meromorphic functions f : C \ R → L(H), such that

the Nevanlinna kernel

Nf (z, w) =
f(z) − f(w)∗

z − w̄
, z, w ∈ ρ(f), z 6= w̄,

Nf (z, z̄) = f ′(z), z ∈ ρ(f),

has precisely ν negative and π positive squares. In other words, for each n ∈ N

and each choice of z1, . . . , zn ∈ ρ(f) and x1, . . . , xn ∈ H, the quadratic form

n∑

i,j=1

(Nf (zi, zj)xi, xj)ξi ξ̄j

has at most ν negative and π positive squares, and there is an n ∈ N and a choice
of z1, . . . , zn ∈ ρ(f) and x1, . . . , xn ∈ H, such that if ν < ∞ then the quadratic
form has precisely ν negative and if π < ∞ it has precisely π positive squares.
In this definition we may restrict ourselves to Hilbert spaces. For if K is a Krĕın
space with fundamental symmetry J and H is the associated Hilbert space, then
J gives a bijective correspondence f → fJ between N

π
ν (K) and N

π
ν (H).

2. Selfadjoint relations in Pontryagin spaces

The indices (ν, π) of a Krĕın space P are the maximal dimensions of a negative
and of a positive subspace of P. We will always assume that one of the indices is
finite, in which case we speak of a Pontryagin space. Let P be a Pontryagin space
and let A be a selfadjoint relation in P. In general, the resolvent set ρ(A) may
be empty due to the structure of the multivalued part of A; if A is an operator,
it is nonempty. In the sequel we will consider only selfadjoint relations A whose
resolvent set is nonempty. In that case C \ R ⊂ ρ(A) with a possible exception of
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finitely many points which are normal eigenvalues of A and which lie symmetrically
with respect to the real axis, cf. [10, 11]. Two selfadjoint relations A1, A2 in
Pontryagin spaces P1, P2 with nonempty resolvent sets are unitarily equivalent
if there exists a unitary operator U from P1 onto P2, such that (A2 − z)−1U =
U(A1 − z)−1, z ∈ ρ(A1) ∩ ρ(A2). In this case, for z ∈ ρ(A1) ∩ ρ(A2),

{ {U(A1 − z)−1h, U(I + z(A1 − z)−1)x} : x ∈ P }

= { {(A2 − z)−1Uh, (I + z(A2 − z)−1)Ux} : x ∈ P },

which leads to ρ(A1) = ρ(A2). Now we will discuss the reduction of a selfadjoint
relation and the construction of a selfadjoint relation via a symmetric operator or
relation in an indefinite inner product space.

Let M be a subspace of P, not necessarily closed. The selfadjoint relation A
induces a closed linear subspace LM of P defined by

LM = span { (I + (z − z0)(A − z)−1)a : a ∈ M, z ∈ ρ(A) }, z0 ∈ ρ(A).

Clearly, M ⊂ LM. It follows from the resolvent identity and the continuity of
(A − w)−1, that

(A − w)−1LM ⊂ LM, w ∈ ρ(A).(2.1)

The invariant subspace LM may be a proper subspace of P; it can even be degen-
erate. However, after factorization the invariant subspace LM and the selfadjoint
relation A give rise to a Pontryagin space PM and a ”minimal” selfadjoint relation
AM in PM in the following way. The invariance property (2.1) implies that

{ {(A − z)−1x, (I + z(A − z)−1)x} : x ∈ LM } ⊂ A ∩ L2
M

.

Conversely, each element in A ∩ L2
M

is contained in the left side. Hence for each
z ∈ ρ(A),

A ∩ L2
M = { {(A − z)−1x, (I + z(A − z)−1)x} : x ∈ LM }.(2.2)

Let L0
M

= LM ∩ L⊥
M

be the isotropic part of LM. Then the factor space

PM = LM/L0
M

is a Pontryagin space, cf. [4, p.69] and [6, Theorem 2.6]. In PM we define the
relation AM by AM = (A ∩ L2

M
)/(L0

M
)2 or, more explicitly, by

AM = { {x̂, ŷ} : {x, y} ∈ A ∩ L2
M

}.

It follows from (2.1) that L⊥
M

, hence also L0
M

, is invariant under (A − w)−1,
w ∈ ρ(A). Therefore, the resolvent (A − z)−1 induces a bounded linear mapping
in PM, which we denote by Rz . The identity (A− z)−∗ = (A− z̄)−1 implies that
R∗

z = Rz̄. It follows from the definition and (2.2) that

AM = { {Rzx, (I + zRz)x} : x ∈ PM }, z ∈ ρ(A).
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These observations give the following result.

Theorem 2.1. Let M be a subspace of the Pontryagin space P and let A be a

selfadjoint relation in P with a nonempty resolvent set. Then the relation AM is

selfadjoint in PM and ρ(A) ⊂ ρ(AM), so that the resolvent set of AM is nonempty.

Moreover, the resolvent operator (AM − z)−1 coincides with the mapping induced

by (A − z)−1 in PM.

The selfadjoint relation A is called minimal with respect to M if LM = P, in
which case AM = A. Clearly, the relation AM is minimal with respect to the
image of M in PM. We will call AM the minimal part of A.

Let L be a linear space with inner product [·, ·]. The indices (ν, π) of L are the
maximal dimensions of a negative and of a positive subspace of L. Assume that
either ν or π is finite. A sequence {(an)}∞1 of elements in L is said to converge to
an element a ∈ L if

(i) [an, b] → [a, b] for all b ∈ L;

(ii) [an, an] → [a, a].

A linear subspace A of L is dense if every element of L can be approximated in
this sense by a sequence of elements of A. Since L may be degenerate, i.e. the
isotropic part L0 = L∩L⊥ may be nontrivial, limits of sequences are not uniquely
determined. If an → a, then also an → a+h for any h ∈ L0. Conversely, if an → a
and an → a′, then clearly a− a′ ∈ L0. The completion of the factor space L/L0 is
a Pontryagin space P with indices (ν, π) in which the above notion of convergence
is preserved [12, 13].

Theorem 2.2. Let L be an inner product space with indices (ν, π), where ν, π ∈ N,

not both equal to ∞. Let S be a symmetric relation in L, such that ran (S − z) is

dense in L for some z ∈ C+ and some z ∈ C−. Then

A = span { {x̂, ŷ} ∈ P2 : {x, y} ∈ S },

is a selfadjoint relation in the Pontryagin space P with a nonempty resolvent set.

Proof. It is easy to see that

A1 = span { {x̂, ŷ} ∈ P2 : {x, y} ∈ S },

is a symmetric linear relation in P. Moreover, since ran (S − z) is dense in L, also
ran (A1 − z) is dense in P. As the closure of (the graph of) A1, A is symmetric
and ran (A − z) = P. The symmetry of A implies that ker (A − z̄) = {0}. We
conclude that A is selfadjoint and has a nonempty resolvent set [10, 11]. 2

In various forms of the Nevanlinna-Pick interpolation problem we will encounter
an indefinite inner product space G, a Pontryagin space P, and an isometry Φ
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from G to P. Then a relation T in G can be lifted to the relation Φ ◦ T in P by

Φ ◦ T = { {Φx, Φy} : {x, y} ∈ T }.

If G is degenerate, then the isometry Φ may have a nontrivial kernel kerΦ ⊂ G0,
in which case Φ ◦ T may be a proper linear relation. Clearly, if T is a symmetric
relation in G, then Φ ◦ T is a symmetric relation in P.

3. Induced functions

Let P be a Pontryagin space with inner product [·, ·] and let A be a selfadjoint
relation in P with a nonempty resolvent set. Let H be a Hilbert space and assume
that Γ ∈ L(H, P). Fix z0 ∈ ρ(A) and let B ∈ L(H) such that ImB = (Im z0)Γ ∗Γ .
Define the function fA by

fA(z) = B∗ + (z − z̄0)Γ
∗(I + (z − z0)(A − z)−1)Γ, z ∈ ρ(A),(3.1)

where the adjoints are taken in the corresponding spaces. Note that f(z) ∈ L(H)
and fA(z0) = B. We will consider fA as a function defined on its domain of
holomorphy ρ(fA) within C \ R. Clearly, ρ(fA) ⊇ ρ(A) ∩ (C \ R), so that ρ(fA)
contains C \ R with the possible exception of finitely many points. Using

B∗ + (z − z̄0)Γ
∗Γ = ReB + (z − Re z0)Γ

∗Γ,

we see that the function fA also has the representation

fA(z) = Re B + (z − Re z0)Γ
∗Γ + (z − z0)(z − z̄0)Γ

∗(A − z)−1Γ.(3.2)

Hence fA is real. Moreover, by using the resolvent identity we see that

Nf (z, w) = [(I + (z − z0)(A − z)−1)Γx, (I + (w − z0)(A − w)−1)Γy].(3.3)

This relation implies the following result.

Theorem 3.1. Let P be a Pontryagin space with indices (ν, π). Let A be a

selfadjoint relation in P with a nonempty resolvent set and let Γ ∈ L(H, P). Then

fA ∈ N
π′

ν′ (H) where ν′ ≤ ν and π′ ≤ π. Moreover, if A is Γ -minimal, then ν′ = ν
and π′ = π.

Let A1 and A2 be selfadjoint relations in Pontryagin spaces P1, P2, whose
resolvent sets are nonempty, and let Γ1 ∈ L(H, P1) and Γ2 ∈ L(H, P2). The
relations A1 and A2 are called Γ -unitarily equivalent, if A1 and A2 are unitarily
equivalent and the associated unitary operator U : P1 → P2 satisfies UΓ1 = Γ2.
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Theorem 3.2. If A1 and A2 are Γ -unitarily equivalent then fA1
= fA2

. Con-

versely, if A1 is Γ1-minimal, A2 is Γ2-minimal and fA1
= fA2

, then A1 and A2

are Γ -unitarily equivalent.

Proof. Let A1 and A2 be Γ -unitarily equivalent and let U be the associated unitary
operator. Due to UΓ1 = Γ2 we have Γ ∗

1 U∗ = Γ ∗
2 . These identities together with

U∗U = I and (A2−z)−1U = U(A1−z)−1 immediately show that fA1
(z) = fA2

(z)
for all z ∈ ρ(A1)∩ρ(A2). (Note that we use the normalization fA1

(z0) = fA2
(z0) =

B.) Since (C \ R) \ (ρ(A1)∩ ρ(A2)) is finite we conclude that ρ(fA1
) = ρ(fA2

), i.e.
fA1

= fA2
.

To prove the converse part, let A1 and A2 be Γ -minimal selfadjoint relations
and suppose that fA1

= fA2
. It follows from (3.3) that the relation

V (I + (z − z0)(A1 − z)−1)Γ1y = (I + (z − z0)(A2 − z)−1)Γ2y, y ∈ H,

defines a linear mapping from the dense subspace Lran Γ1
⊂ P1 onto the dense

subspace Lran Γ2
⊂ P2, which is isometric. Moreover, V Γ1 = Γ2. It is also clear

that V (A1 − z)−1Γ1 = (A2 − z)−1Γ2. We extend this identity from the range of
Γ1 by means of the resolvent identity as follows

V (A1 − w)−1(I + (z − z0)(A1 − z)−1)Γ1

= (A2 − w)−1(I + (z − z0)(A2 − z)−1)Γ2

= (A2 − w)−1V (I + (z − z0)(A1 − z)−1)Γ1.

Then, by linearity the relation

V (A1 − w)−1y = (A2 − w)−1V y, w ∈ ρ(A1) ∩ ρ(A2),

holds for all y ∈ Lran Γ1
. Sinve V maps a dense set from the Pontryagin space P1

onto a dense subset of the Pontryagin space P2, it has a unitary continuation U
from P1 onto P2. Then clearly A1 and A2 are Γ -unitarily equivalent under U . 2

In order to study the derivatives of the function fA in (3.1) it is convenient to
introduce the function φA by

φA(z) = (I + (z − z0)(A − z)−1)Γ, z ∈ ρ(A).(3.4)

Then the right side of (3.3) can be written as [φA(z)x, φA(w)y]. Hence when
z, w ∈ ρ(A), x, y ∈ H, and k, l ≥ 0, this gives

[φ
(k)
A (z)x, φ

(l)
A (w)y] =

(
∂k

∂zk

∂l

∂w̄l

fA(z) − fA(w̄)

z − w̄
x, y

)
,(3.5)

and differentiation of the function in the right side leads to

k∑

h=0

(
k

h

)
(−1)k−h(k + l − h)!

(z − w̄)k+l+1−h
(f

(h)
A (z)x, y)

+

l∑

h=0

(
l

h

)
(−1)l−h(k + l − h)!

(w̄ − z)k+l+1−h
(f

(h)
A (w̄)x, y).
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Lemma 3.3. Let z1, . . . , zn ∈ ρ(A) and x1, . . . , xn ∈ H, then

{
∑n

i=1φA(zi)xi,
∑n

i=1ziφA(zi)xi} ∈ A if
∑n

i=1xi = 0.(3.6)

Let z ∈ ρ(A), x ∈ H, and k ≥ 1, then
{
φ

(k)
A (z)x, zφ

(k)
A (z)x + kφ

(k−1)
A (z)x

}
∈ A.(3.7)

Let z, w ∈ ρ(A), x, y ∈ H, and k, l ≥ 1, then

(f
(k)
A (z)x, y) = (z − w̄)[φ

(k)
A (z)x, φA(w)y] + k[φ

(k−1)
A (z)x, φA(w)y],(3.8)

and

(z − w̄)[φ
(k)
A (z)x, φ

(l)
A (w)y](3.9)

= l[φ
(k)
A (z)x, φ

(l−1)
A (w)y] − k[φ

(k−1)
A (z)x, φ

(l)
A (w)y].

Proof. The resolvent identity implies that

(A − z0)
−1φ(z) = (A − z)−1Γ,

which leads to the inclusion (3.6). By differentiation of (3.4) we obtain

φ
(k)
A (z) = (z − z0)

dk

dzk
(A − z)−1Γ + k

dk−1

dzk−1
(A − z)−1Γ.

With
dk

dzk
(A − z)−1 = k!(A − z)−(k+1),

this gives

φ
(k)
A (z) = k!(z − z0)(A − z)−(k+1)Γ + k!(A − z)−kΓ = k!(A − z)−kφA(z).(3.10)

The inclusion (3.7) can be seen from (3.10). Since

fA(z) = fA(z0)
∗ + Γ ∗(z − z̄0)φA(z),

it follows for k ≥ 1 that,

(f
(k)
A (z)x, y) =

(
(z − z̄0)φ

(k)
A (z)x + kφ

(k−1)
A (z)x, Γy

)
,(3.11)

so that (3.8) holds for w = z0. The general case follows from the fact that the
element in the left side of (3.7) belongs to A and that, according to (3.6), also the
element

{φA(w)y − φA(z0)y, wφA(w)y − z0φA(z0)y}

belongs to A. Since A is selfadjoint, these elements are adjoint which in conjunction
with (3.11) implies (3.8). Similarly, (3.9) follows from (3.7) and

{
φ

(l)
A (w)y, wφ

(l)
A (w)y + lφ

(l−1)
A (w)y

}
∈ A.

2
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4. Induced models

Let f ∈ N
π
ν (H) where ν, π ∈ N, not both equal to ∞. We will show that there

exist a Pontryagin space P, a selfadjoint relation A in P with a nonempty resolvent
set, and a mapping Γ ∈ L(H, P) such that f = fA as in (3.1). Define a linear
space Lf of formal finite sums by

Lf = {
∑

z∈ρ(f)xzez : xz ∈ H, xz = 0 for almost all z },

and provide Lf with an inner product given by

[xez , yew] = (Nf (z, w)x, y ) , z, w ∈ ρ(f), x, y ∈ C.

Then Lf is an inner product space with ν negative and π positive squares. Con-
vergence in Lf is defined as in Section 2. Define the (graph of the) operator Sf in
Lf by

Sf = { {
∑

z∈ρ(f)xzez,
∑

z∈ρ(f)zxzez} :
∑

z∈ρ(f)xz = 0 },

so that Sf stands for pointwise multiplication.

Lemma 4.1. The operator Sf in Lf is symmetric without eigenvalues in ρ(f). For

each z ∈ ρ(f), the range ran (Sf −z) is dense in Lf . Moreover, for all z, z0 ∈ ρ(f)
and all x, y ∈ H:

(f(z)x, y) = (f(z0)
∗x, y) + (z − z̄0)[(I + (z − z0)(Sf − z)−1)xez0

, yez0
].(4.1)

Proof. The operator Sf is symmetric, since it follows from
∑

z∈ρ(f)xz = 0 and∑
w∈ρ(f)yw = 0, that

[
∑

z∈ρ(f)zxzez,
∑

w∈ρ(f)ywew] − [
∑

z∈ρ(f)xzez,
∑

w∈ρ(f)wywew]

=
∑

z,w∈ρ(f)(z − w̄)[xzez, ywew]

=
∑

z,w∈ρ(f) ((f(z)xz, yw) − (xz , f(w)yw))

= (
∑

z∈ρ(f)f(z)xz ,
∑

w∈ρ(f)yw) − (
∑

z∈ρ(f)xz ,
∑

w∈ρ(f)f(w)yw)

= 0.

The operator Sf − z, z ∈ ρ(f), is injective, as no single component ez is included
in domSf . It follows directly from the definition that

(Sf − z)−1xew =
xez − xew

z − w
, z 6= w.(4.2)

The relation (4.2) implies that for z, z0 ∈ ρ(f), z 6= z̄0,

[(I + (z − z0)(Sf − z)−1)xez0
, yez0

] = [xez, yez0
] =

(
f(z) − f(z0)

∗

z − z̄0
x, y

)
.
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This gives (4.1). Furthermore, we obtain for each z0 ∈ ρ(f),

Lf = span { xez0
, xez0

+ (z − z0)(Sf − z)−1xez0
: z ∈ ρ(f) \ {z0}, x ∈ H }.(4.3)

We now show that ran (Sf − z) is dense in Lf . It follows from (4.2) that

ran (Sf − z) = span { xew : w ∈ ρ(f) \ {z}, x ∈ H }.(4.4)

Let zn, z ∈ ρ(f), zn → z in C and let xn, x ∈ H, xn → x in the norm of H. We
claim that

xnezn
→ xez in Lf .(4.5)

Then (4.5) and (4.4) imply that ran (Sf −z) is dense in Lf . To see (4.5), first note
that zn → z implies that

f(zn) − f(z0)
∗

zn − z̄0
→

f(z) − f(z0)
∗

z − z̄0
or f ′(z̄0),

depending on z 6= z̄0 or z = z̄0, respectively. Moreover, this sequence is uniformly
bounded in the operator norm. Therefore, we conclude

[xnezn
, yez0

] =

(
f(zn) − f(z0)

∗

zn − z̄0
x, y

)
+

(
f(zn) − f(z0)

∗

zn − z̄0
(xn − x), y

)

→ [xez, yez0
],

and

[xnezn
, xnezn

] =

(
f(zn) − f(zn)∗

zn − z̄n

x, x

)

+

(
f(zn) − f(zn)∗

zn − z̄n

(xn − x), x

)

+

(
f(zn) − f(zn)∗

zn − z̄n

x, xn − x

)

+

(
f(zn) − f(zn)∗

zn − z̄n

(xn − x), xn − x

)

→

(
f(z) − f(z)∗

z − z̄
x, x

)

= [xez, xez].

According to Section 2 these limiting relations imply (4.5). 2

Theorem 4.2. Let f ∈ N
π
ν (H) where ν, π ∈ N, not both equal to ∞. Then there

exist a Pontryagin space Pf with indices (ν, π), a mapping Γ ∈ L(H, Pf ), and a

Γ -minimal selfadjoint relation Af in Pf with ρ(Af ) ∩ (C \ R) = ρ(f), such that

f(z) = f(z0)
∗ + (z − z̄0)Γ

∗(I + (z − z0)(Af − z)−1)Γ, z, z0 ∈ ρ(f).(4.6)
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Proof. Denote the completion of Lf by Pf . Since f ∈ N
π
ν (H), the indices of Pf

are given by (ν, π). By Lemma 4.1, Sf is a symmetric operator in Lf and its range
ran (Sf − z) is dense in Lf for each z ∈ ρ(f). Hence by Theorem 2.2, Sf in Lf

induces a selfadjoint relation Af in Pf . The relation Af has a nonempty resolvent
set; in fact, ρ(f) ⊆ ρ(Af ). Define the mapping Γ : H → Lf by

Γx = xez0
, x ∈ H.(4.7)

For x, y ∈ H it follows that

[Γx, Γx] = [xez0
, xez0

] = (Nf (z0, z0)x, x), [Γx, yew] = (Nf (z0, w)x, y).

Hence the operator Γ is bounded and by

Γx = x̂ez0
, x ∈ H,

it can be viewed as Γ ∈ L(H, P). Due to (4.3), Af is Γ -minimal. We have

[a, ŷez0
] = [a, Γy] = (Γ ∗a, y), y ∈ H, a ∈ Pf ,

and, in particular,
Im f(z0)

Im z0
=

f(z0) − f(z0)
∗

z − z̄0
= Γ ∗Γ.

Now the identity (4.6) follows from the corresponding identity (4.1). In other
words, f = fAf

and we have ρ(Af ) ∩ (C \ R) = ρ(f). 2

Note that if a selfadjoint relation A is Γ -minimal, then ρ(fA) = ρ(A) ∩ (C \ R).

5. A classical Nevanlinna-Pick interpolation problem

The classical Nevanlinna-Pick interpolation problem which we consider here is
to find all solutions f ∈ N

π
ν (H) of

zi ∈ ρ(f), f(zi) = Wi, i = 1, . . . , n,(5.1)

when for some n ∈ N the data z1, . . . , zn ∈ C+ and W1, . . . , Wn ∈ L(H) are given.
In order to describe the solutions of this problem we will follow the approach used
by Krĕın and Langer [15]. Define the linear space G of formal finite sums by

G = {
∑n

i=1xiei : xi ∈ H },

and provide G with an inner product given by

[xei, yej] =

(
Wi − W ∗

j

zi − z̄j

x, y

)
, x, y ∈ H, i, j = 1, . . . , n.
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Define the (graph of the) operator T in G by

T = { {
∑n

i=1xiei,
∑n

i=1zixiei} :
∑n

i=1xi = 0 } .

Clearly, T is a symmetric operator in G, since it follows from
∑n

i=1xi = 0 and∑n
j=1yj = 0, that

[
∑n

i=1 zixiei,
∑n

j=1 yjej ] − [
∑n

i=1 xiei,
∑n

j=1 zjyjej ]

=
∑n

i,j=1 (zi − z̄j)[xiei, yjej ]

=
∑n

i,j=1 ((Wi − W ∗
j )xi, yj)

= (
∑n

i=1 Wixi,
∑n

j=1 yj ) − (
∑n

i=1 xi,
∑n

j=1 Wjyj )

= 0.

Theorem 5.1. Let ν, π ∈ N, not both equal to ∞. The function f ∈ N
π
ν (H)

satisfies (5.1) if and only if there exist a Pontryagin space P, a selfadjoint relation

A in P, and an isometry Φ : G → P with the following properties:

(i) the indices of P are (ν, π);

(ii) z1, . . . , zn ∈ ρ(A);

(iii) A is Γ -minimal, when Γ ∈ L(H, P) and Γx = Φ(xe1), x ∈ H;

(iv) A extends Φ ◦ T ,

such that

f(z) = W ∗
1 + (z − z̄1)Γ

∗(I + (z − z1)(A − z)−1)Γ.(5.2)

Proof. Let P, A, and Φ be given, such that (i)–(iv) hold. Hence the function f
defined by (5.2) is of the form (3.1) with z0 = z1: f(z) = fA(z). It follows from (i),
(ii), (iii), and Theorem 3.1 that f ∈ N

π
ν (H) with z1, . . . , zn ∈ ρ(f). The equality

(5.1) is equivalent to

Wi − W ∗
1

zi − z̄1
= Γ ∗(I + (zi − z1)(A − zi)

−1)Γ, i = 1, . . . , n.(5.3)

For i = 1, the identity (5.3) follows from

(
W1 − W ∗

1

z1 − z̄1
x, y

)
= [xe1, ye1] = [Φ(xe1), Φ(ye1)] = [Γx, Γy] = (Γ ∗Γx, y),

when x, y ∈ H. For i > 1, the definition of T implies that

{
xe1,

xei − xe1

zi − z1

}
∈ (T − zi)

−1.
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It follows from (iv), that
{

Γx, Φ

(
xei − xe1

zi − z1

)}
=

{
Φ(xe1), Φ

(
xei − xe1

zi − z1

)}
∈ (A − zi)

−1,

and, therefore, that

Γ ∗(I + (zi − z1)(A − zi)
−1)Γx = Γ ∗Φ(xei).(5.4)

For all y ∈ H,

(Γ ∗Φ(xei), y) = [Φ(xei), Γ y] = [Φ(xei), Φ(ye1)] = [xei, ye1] =

(
Wi − W ∗

1

zi − z̄1
x, y

)
,

so that (5.4) implies (5.3). Hence f = fA satisfies (5.1).
Conversely, let f ∈ N

π
ν (H) be a function with z1, . . . , zn ∈ ρ(f). Let P, A, and

Γ be as in Theorem 4.2, so that f = fA with z0 = z1 in (3.1), cf. (3.2). This
establishes (i), (ii), and the first statement of (iii), that A is Γ -minimal. Define
Φ : G → P by

Φ(xei) = x̂ezi
,

so that

[Φ(xei), Φ(yej)] = [x̂ezi
, ŷezj

] = [xezi
, yezj

] =

(
f(zi) − f(zj)

∗

zi − z̄j

x, y

)
.

Hence, if in addition f satisfies (5.1), the right side equals [xei, yej] and Φ is
an isometry from G to P. Moreover, from (4.7) with z0 = z1 it follows that
Γx = Φ(xe1), which completes the proof of (iii). The definition of T and A imply
(iv). 2

6. A multiple point Nevanlinna-Pick interpolation problem

The multiple point Nevanlinna-Pick interpolation problem is to find all solutions
f ∈ N

π
ν (H) of

zi ∈ ρ(f), f (k)(zi) = Wik, i = 1, . . . , n, k = 0, . . . , ki,(6.1)

when for some n ∈ N the data z1, . . . , zn ∈ C+, k1, . . . , kn ∈ N ∪ {0}, and Wik ∈
L(H), i = 1, . . . , n, k = 0, . . . , ki, are given. Closely connected to (6.1) is the
following classical Nevanlinna-Pick problem: to find all solutions f ∈ N

π
ν (H) of

zi ∈ ρ(f), f(zi) = Wi0, i = 1, . . . , n.(6.2)

In order to solve (6.2) we define the linear space G0 as the set of all finite sums

G0 = {
∑n

i=1xi0ei0 : xi0 ∈ H } ,
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provided with an inner product by

[xi0ei0, yj0ej0] =

(
Wi0 − W ∗

j0

zi − z̄j

xi0, yj0

)
.

In G0 the operator T0 defined by

T0 = { {
∑n

i=1xi0ei0,
∑n

i=1zixi0ei0} :
∑n

i=1xi0 = 0 }

is symmetric. In order to solve (6.1) we extend the space G0 to the linear space
G of formal finite sums by

G =
{∑n

i=1

∑ki

k=0xikeik : xik ∈ H
}

,

and provide G with the inner product inductively defined by

[xeik, yejl] =
l[xeik, yej,l−1] − k[xei,k−1, yejl]

zi − z̄j

, k, l ≥ 1,

[xeik, yej0] =
(Wikx, y) − k[xei,k−1, yej0]

zi − z̄j

, k ≥ 1,

and

[xei0, yejl] =
l[xei0, yej,l−1] − (x, Wjly)

zi − z̄j

, l ≥ 1.

In G we extend T0 to the operator T by
{{∑n

i=1

∑ki

k=0xikeik,
∑n

i=1

∑ki

k=0(zixikeik + kxi,k−1ei,k−1)
}

:
∑n

i=1xi0 = 0
}

,

where we formally put xi,−1 = 0, so that

T (
∑n

i=1xi0ei0) =
∑n

i=1zixi0ei0 if
∑n

i=1xi0 = 0,

and
T (xikeik) = zixikeik + kxikei,k−1, k ≥ 1.

The operator T is symmetric, since for k, l ≥ 1,

[T (xikeik), yjlejl] − [xikeik, T (yjlejl)]

= (zi − z̄j)[xikeik, yjlejl] + k[xei,k−1, yjlejl] − l[xikeik, yjlej,l−1]

= 0,

while, for instance for l ≥ 1,
∑n

i=1xi0 = 0 implies that

[ T (
∑n

i=1xi0ei0), yjlejl ] − [
∑n

i=1xi0ei0, T (yjlejl) ]

=
∑n

i=1 ((zi − z̄j)[xi0ei0, yjlejl] − [xi0ei0, lyjlej,l−1])

= −(
∑n

i=1xi0, Wjlyjl)

= 0,
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due to the definition of the inner product. Finally, note that the explicit form of
the inner product [·, ·] is given by

[xeik, yejl] =

k∑

h=0

(
k

h

)
(−1)k−h(k + l − h)!

(zi − z̄j)k+l+1−h
(Wihx, y)(6.3)

+

l∑

h=0

(
l

h

)
(−1)l−h(k + l − h)!

(z̄j − zi)k+l+1−h
(W ∗

jhx, y), x, y ∈ H.

Theorem 6.1. Let ν, π ∈ N, not both equal to ∞. The function f ∈ N
π
ν (H)

satisfies (6.1) if and only if there exist a Pontryagin space P, a selfadjoint relation

A in P, and an isometry Φ : G → P with the following properties:

(i) the indices of P are (ν, π);

(ii) z1, . . . , zn ∈ ρ(A);

(iii) A is Γ -minimal, when Γ ∈ L(H, P) and Γx = Φ(xe10), x ∈ H;

(iv) A extends Φ ◦ T ,

such that

f(z) = W ∗
10 + (z − z̄1)Γ

∗(I + (z − z1)(A − z)−1)Γ.(6.4)

Proof. Let A, P, and Φ be given such that (i)–(iv) hold. Hence the function f
defined by (6.4) is of the form (3.1) with z0 = z1: f(z) = fA(z). It follows from (i),
(ii), (iii), and Theorem 3.1 that f ∈ N

π
ν (H) with z1, . . . , zn ∈ ρ(f). The inclusion

T0 ⊂ T and Theorem 5.1 imply that (6.2) holds, i.e. (6.1) holds for k = 0. Now
assume that k ≥ 1. By the definition of T ,

{xeik, zixeik + kxei,k−1} ∈ T,

and it follows from (iv) that

{Φ(kxei,k−1), Φ(xeik)} ∈ (A − zi)
−1.

Hence for all k ≥ 1,

k(A − zi)
−1Φ(xei,k−1) = Φ(xeik),

which implies that
k!(A − zi)

−kΦ(xei,0) = Φ(xeik).(6.5)

Since T0 ⊂ T , it follows as in (5.4) that (I + (zi − z1)(A − zi)
−1)Γx = Φ(xei,0).

Substituting this into (6.5) and using (3.10) we observe,

φ
(k)
A (zi)x = Φ(xeik).
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Hence according to (3.11) with z = zi and z0 = z1,

(f
(k)
A (zi)x, y) = (zi − z̄1)[φ

(k)
A (zi)x, Γy] + k[φ

(k−1)
A (zi)x, Γy]

= (zi − z̄1)[Φ(xeik), Φ(ye10)] + k[Φ(xei,k−1), Φ(ye10)]

= (zi − z̄1)[xeik, ye10] + k[xei,k−1, ye10].

Therefore, using the definition of the inner product in G, we conclude that

(f
(k)
A (zi)x, y) = (Wikx, y).

Hence f = fA satisfies (6.1).
Conversely, assume that a function f ∈ N

π
ν (H) satisfies (6.1) with z1, . . . , zn ∈

ρ(f). Let P, A, and Γ be as in Theorem 4.2, so that f = fA with z0 = z1 in
(3.1), cf. (3.2). This establishes (i), (ii), and the first statement of (iii), that
A is Γ -minimal. Define the corresponding function φA(z) as in (3.4) and define
Φ : G → P by

Φ(xeik) = φ
(k)
A (zi)x.

Since f is a solution of (6.1), it follows from Lemma 3.3 with z = zi and w = zj

and the definition of the inner product in G, that

[φ
(k)
A (zi)x, φ

(l)
A (zj)y] = [xeik, yejl],

and hence Φ is isometric. Clearly, Γx = Φ(xe10), which completes the proof of
(iii). Since, in particular, f satisfies (6.2), Theorem 5.1 shows that Φ ◦ T0 ⊂ A.
Now let k ≥ 1 and let {xeik, zixeik + kxei,k−1} ∈ T . Then

{Φ(xeik), Φ(zixeik + kxei,k−1)} = {φ
(k)
A x, ziφ

(k)
A (zi)x + kφ

(k−1)
A (zi)x} ∈ A,

by (3.7) of Lemma 3.3. By the definition of T we conclude that Φ◦T ⊂ A, showing
(iv). 2
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la théorie des opérateurs de l’espace hilbertien”, Acta Math. Acad. Sci. Hungaricae,
7 (1957), 295–302.

[17] B. Sz.-Nagy and A. Koranyi, “Operatortheoretische Behandlung und Verallge-
meinerung eines Problemkreises in der komplexen Funktionentheorie”, Acta Math.,
100 (1958), 171–202.

[18] H. Woracek, ”Multiple point interpolation in Nevanlinna classes”, Integral Equations
Operator Theory (to appear).



Some interpolation problems of Nevanlinna-Pick type 17

S. Hassi
Department of Statistics
University of Helsinki
PL 54, 00014 Helsinki
Finland

H.S.V. de Snoo
Department of Mathematics
University of Groningen
Postbus 800, 9700 AV Groningen
Nederland

H. Woracek
Institut für Analysis, Technische Mathematik
und Versicherungsmathematik
Technische Universität Wien
Wiedner Hauptstrasse 8-10/114, A-1040 Wien
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