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In this paper we give an analogue of Krein’s formula on the description of generalized resolvents

of a symmetry S in the case that the S acts in a degenerated inner product space. These results

are applied to the extension problem of positive definite functions.

1 Introduction

If H is a Pontryagin space and S is a symmetric operator in H with defect numbers (1, 1),
Krein’s formula

[(A− z)−1u, v] = [(A0 − z)−1u, v] − [u, χ(z)]
1

τ(z) + q(z)
[χ(z), v], u, v ∈ H, (1.1)

establishes a correspondence between all selfadjoint extensions A of S and parameters τ(z),
when τ runs through a Nevanlinna class. Here A0 is a fixed (canonical) selfadjoint extension
of S, χ(z) parametrizes the defect spaces of S, and q(z) is a Q-function of S (see [9]).

In various applications, e.g. interpolation or extension problems, it is possible to obtain
parametrizations of solutions via Krein’s formula. Thereby an inner product space H and
a symmetric operator S is assigned to the given data (see [10], [12]). However, there are
exceptional cases where the classical theory cannot be applied. This happens if the model
space H degenerates, which takes plase e.g. in the so called singular points in [12] (see also
[1], [2], [13]).

In this paper we are concerned with the case that the degeneration of H is one dimen-
sional, and give an analogue of Krein’s formula (1.1). The parameter τ does not run through
a whole Nevanlinna class, but through a proper subclass T . This class is determined by
analytic properties. Our approach differs from the classical method: We introduce a graph
perturbation of the given symmetry. Therefore it is convenient to use the notation of linear
relations, instead of operators. We shall demonstrate our results on an extension problem
for a hermitian function with one negative square.



In the (preliminary) Section 2 we show that the classical definition of the defect numbers
of a symmetry (see [3], [5]) remains meaningful, even if H is degenerated. The graph per-
turbation which is the main tool of this work is introduced and studied in Sections 3 and 4.
In Section 5 we prove our analogue of Krein’s formula (1.1), which is a formula of the same
type, but with a different set of parameters. It turns out that the expressions A0, χ(z) and
q(z) can be viewed as canonical extension, parametrization of defect spaces and Q-function,
respectively, of a certain (relational) symmetric extension of S. The Sections 6 and 7 deal
with a characterization of the class T of parameters by their analytic properties. Finally, in
Section 8, an example is given.

The notation used in this article is similar to [3] concerning linear relations and to [8]
concerning the theory of Pontrjagin spaces. For abbreviation we will call a Pontrjagin space
with negative index κ a πκ-space.

2 Defect indices in degenerated inner product spaces

In this preliminary section we show that the notion of defect numbers can be carried over
to degenerated inner product spaces.

Let H be an inner product space with a one dimensional degeneration, i.e. let

H = Hn[+̇]〈h0〉 (2.1)

where Hn is a Pontrjagin space and the isotropic part H◦ of H equals 〈h0〉.
The space H can be embedded canonically into a Pontryagin space Pc: Let

Pc = Hn[+̇](〈h0〉︸ ︷︷ ︸
=H

+̇〈h1〉),

where h1 is neutral and [h0, h1] = 1.
The norm defined on H as a subspace Pc is equivalent to the norm ‖.‖ defined as

‖f‖2 = ‖fn + ϕ0h0‖
2 = ‖fn‖

2
Hn

+ |ϕ0|
2

when f = fn + ϕ0h0 is the decomposition of f with respect to (2.1). We will refer to the
topology on H induced by this norm as the canonical topology.

We call a linear relation T ⊆ H2 closed if it is a closed subset of H2 with respect to the
canonical topology. Equivalently T is a closed relation regarded as a relation in Pc: T ⊆ P2

c .
Let T be a closed symmetric relation in H. Assume that for some z ∈ C

+ and some
z ∈ C

−

ker (S − z) = {0}, (2.2)

and that for some z ∈ C
+ and some z ∈ C

−

h0 6∈ R (S − z) . (2.3)

Then, regarding T as a relation in Pc, the dimension of R (T − z)⊥ is constant on the upper
(lower, respectively) half plane with possible exception of a finite set. These dimensions are
the so called defect indices of T (see [5] if T is an operator, [3] in the case of relations).

Let T be a closed symmetric relation. It is shown in [3] that, if the conditions (2.2) and
(2.3) hold for one z ∈ C

+ (C−), they are satisfied for all but finitely many z ∈ C
+ (C−).

This follows from the fact that T/〈h0〉2 ⊆ (H/〈h0〉)2 is again closed and symmetric.



Proposition 1 Let T be a closed symmetric relation in H satisfying (2.2) and (2.3). For
all values of z ∈ C \ R with possible exception of a finite set we have

dimR (T − z)⊥H = dimR (T − z)⊥Pc − 1 (2.4)

as long as the right hand side of (2.4) is finite. In this case the relation (2.4) holds if and
only if h0 6∈ R (T − z). Otherwise dimR (T − z)⊥H = dimR (T − z)⊥Pc .

Proof : Put R = R (T − z). As H ⊆ Pc we have R⊥H ⊆ R⊥Pc . Let f, g ∈ R⊥Pc , f =
fn + ϕ0h0 + ϕ1h1 and g = gn + γ0h0 + γ1h1, then there exist numbers λ, µ not both zero,
such that λξ1 + µη1 = 0. This shows that λf + µg ∈ R⊥H . Thus

dimR⊥Pc ≤ dimR⊥H + 1. (2.5)

By the comment before Proposition 1 it suffices to prove that in (2.5) equality holds if and
only if h0 6∈ R.

If h0 ∈ R and f = fn + ϕ0h0 + ϕ1h1 ∈ R⊥Pc , then 0 = [f, h0] = ϕ1 and therefore f ∈ H,
i.e. R⊥Pc = R⊥H .

If h0 6∈ R (= (R⊥Pc )⊥Pc ) then there is an element f = fn + ϕ0h0 + ϕ1h1 ∈ R⊥Pc , such
that [h0, f ] 6= 0. Thus ϕ1 6= 0 and f 6∈ R⊥Pc .

Due to Proposition 1 the dimension of R (T − z)⊥H is constant on the upper (lower, respec-
tively) half plane with possible exception of finitely many points. Thus we may give the
following

Definition 1 Let T be a closed symmetric relation in H. The numbers dimR (T − z)⊥ for
z in the upper (lower) half plane are called the defect indices of T .

For a symmetric operator T (T (0) = {0}) the condition (2.2) is always satisfied.

Lemma 1 Let T be a symmetric operator in H. Condition (2.3) is not satisfied if and only
if T jh0 ∈ D (T ) for all j = 0, 1, 2, . . ..

Proof : Let h0 = (T − z)f and h0 = (T − w)g for z, w ∈ C
+, then

0 = [h0, g] = [((T − w) + (w − z))f, g] = [f, (T − w)g︸ ︷︷ ︸
=h0

] + (w − z)[f, g] = (w − z)[f, g].

This shows that the elements contained in the inverse images (T − z)(−1)h0 for z ∈ C
+ span

a neutral subspace. Therefore their span is finite dimensional.
Assume that there are infinitely many points zi ∈ C

+, such that h0 = (T − zi)fi. The
elements fi must be linearly dependent. After a possible renumeration of the points zi we
can assume that for some n ≥ 2

0 =
n∑

i=1

λifi (2.6)

is a vanishing linear combination of the elements fi of minimal length, in particular that
λi 6= 0 for i = 1, . . . , n. Applying T to (2.6) we obtain

0 =
n∑

i=1

λiTfi = (
n∑

i=1

λi)h0 +
n∑

i=1

λizifi. (2.7)



If
n∑

i=1
λi = 0 we find

0 =
n∑

i=1

λifi −
1

zn

n∑

i=1

λizifi =
n−1∑

i=1

λi(1 −
zi

zn

)fi

a contradiction, as (2.6) is of minimal length. Thus
n∑

i=1
λi 6= 0 and (2.7) shows that h0 ∈

D (T ). By repeatedly applying T to (2.7) we conclude by induction that T jh0 ∈ D (T ) for
each j ∈ N0.

Assume conversely that T jh0 ∈ D (T ) for j = 0, 1, 2, . . .. It is easily seen by induction
that in fact T jh0 ∈ D (T )◦. Therefore the subspace 〈T jh0|j = 0, 1, . . .〉 is neutral and hence
finite dimensional. It is an invariant subspace for T and we may consider the restriction
T1 = T |〈T jh0|j=0,1,...〉. Clearly T1 − z is injective and therefore bijective for all but finitely
many z ∈ C. Thus

h0 ∈ R (T1 − z) ⊆ R (T − z)

for all but finitely many values of z ∈ C.

Note that (2.3) implies T ∩ 〈h0〉2 = {0}.

Remark 1 Assume that T has defect (1, 1). Then, due to the assumption dimH◦ = 1, (2.2)
and (2.3) are both satisfied if and only if T is a so called standard symmetric relation in Pc

and admits selfadjoint extensions with nonempty resolvent set.

3 A perturbation formula

Let S ⊆ H2 be a symmetric relation with defect (1, 1) which satisfies (2.2) and (2.3). More-
over choose a decomposition (2.1). In this section we show that a certain range perturbation
of S is selfadjoint in the Pontryagin space Hn.

Denote by P the projection of H onto Hn with kernel 〈h0〉.

Lemma 2 The projection P has the properties P 2 = P , P+ = P and

[Pf, g] = [f, g] for f, g ∈ H.

Lemma 2 follows immediately from the fact that the kernel of P is isotropic.

Definition 2 Denote by SP ⊆ H2
n the relation

SP = {(Pf ;Pg) ∈ H2
n|(f, g) ∈ S}.

Since S is closed also the finite dimensional extension S + 〈h0〉2 is closed. This shows that

SP = (S + 〈h0〉
2) ∩H2

n

is a closed relation.



Proposition 2 Let S be a closed symmetric relation in H with defect (1, 1) satisfying (2.2)
and (2.3). Then SP is selfadjoint and has nonempty resolvent set. In fact

σ(SP ) \ R ⊆ {z ∈ C \ R|h0 ∈ R (S − z)}.

Proof : Let (SP − z)f = 0, i.e. let (f ; zf) ∈ SP , then there exists a pair (f ′; g′) ∈ S, such
that f = f ′ + ϕh0 and zg = g′ + γh0. This shows that

(f ′; zf ′ + (γ − zϕ)h0) ∈ S,

which means (f ′; (γ − zϕ)h0) ∈ S − z, i.e. h0 ∈ R (S − z) or ker (S − z) 6= {0}. This is
possible only for finitely many z ∈ C \ R.

The projection P maps H onto Hn. As for all z (with exception of a finite set) 〈h0〉 +
R (S − z) = H holds, we have

PR (S − z) = Hn.

A straightforward computation shows that PR (S − z) = R (SP − z) and thus
dimHn/R (SP − z) = 0 for all but finitely many z ∈ C \ R.

Theorem 4.6 of [3] together with its corollary shows that the assertions of Proposition 2
hold.

Remark 2 The space Hn is isomorphic to the factor space H/〈h0〉 and the relation SP is
isomorphic to S/〈h0〉

2.
If (2.3) is not satisfied SP is a closed symmetric relation in Hn with defect (1, 1).

Remark 3 The assumptions of Proposition 2, in particular the conditions (2.2) and (2.3)
cannot be weakened: If SP is selfadjoint and has nonempty resolvent set, then S has defect
(1, 1) and satisfies (2.2) and (2.3).

Since (2.3) implies S ∩ 〈h0〉2 = {0} the mapping P × P : S → SP , (f ; g) 7→ (Pf ;Pg) is
injective. Denote its inverse by Ψ, i.e. let Ψ(f ; g) = (f ′; g′) for (f ; g) ∈ SP be such that
(f ′; g′) ∈ S and f = Pf ′, g = Pg′ holds. Clearly Ψ is a bijective linear mapping of SP onto
S.

Lemma 3 The mapping Ψ is continuous in the canonical topology on H2.

Proof : The projection P is the orthogonal projection of Pc onto Hn restricted to H. Thus
the mapping P×P : S → SP is continuous, even if S is endowed with the canonical topology
(as a subspace of H2 ⊆ P2

c). Finally the open mapping theorem applies and shows that its
inverse Ψ is also continuous.

Lemma 4 Denote by S◦
P the isotropic part of SP with respect to the inner produt

((f ; g), (f ′; g′) ∈ H2)
[(f ; g), (f ′; g′)] = [f, f ′] + [g, g′]. (3.1)

If ±i 6∈ σp(SP ) we have S◦
P = {0}.



Proof : Let (f ; g) ∈ S◦
P , then

[f, f ′] + [g, g′] = 0 for (f ′; g′) ∈ SP .

Hence (−g; f) ∈ S∗
P = SP . We find that (f ;−f) ∈ S2

P and (g;−g) ∈ S2
P . By the spectral

mapping theorem this implies f = g = 0.

Since the nonreal spectrum of SP is finite, there exists a number λ > 0, such that

±i 6∈ σp(λSP ).

In order to describe the generalized resolvents of S, it suffices to describe the generalized
resolvents of λS. In the final formula (of the type (1.1)) we only have to replace z by z

λ
and

multiply by λ. Hence we may assume in the following that ±i 6∈ σp(SP ).

Proposition 3 There exist elements (c0; d0), (c1; d1) ∈ SP , such that Ψ admits the repre-
sentation

Ψ(f ; g) = (f + ([f, c0] + [g, d0])h0; g + ([f, c1] + [g, d1])h0). (3.2)

Proof : Due to Lemma 4 the space SP is nondegenerated in the inner product (3.1). Consider
the mapping

Ψ1 = Ψ − I : SP → 〈h0〉
2 ∼= C

2.

As Ψ is continuous, the mapping Ψ1 is also continuous. Thus the theorem of Riesz applies
and we find elements (c0; d0), (c1; d1) ∈ SP , such that

Ψ1(f ; g) = ([(f ; g), (c0; d0)]h0; [(f ; g), (c1; d1)]h0). (3.3)

This implies that the representation (3.2) holds.

4 Symmetric extensions

In this section we will show that Ψ induces a correspondence between selfadjoint extensions
of S and SP .

Let P be a Pontrjagin space extending H. Making use of the elements (c0; d0) and (c1; d1)
given by Proposition 3 we can extend Ψ to P2. We will denote this extension again by using
Ψ.

Definition 3 Let Ψ : P2 → P2 be defined as follows:

Ψ(f ; g) = (f + ([f, c0] + [g, d0])h0 − [f, h0]d1 + [g, h0]d0;

; g + ([f, c1] + [g, d1])h0 + [f, h0]c1 − [g, h0]c0).



In order to study symmetric relations the inner product

〈(f ; g), (f ′; g′)〉 = [f, g′] − [g, f ′] for (f ; g), (f ′; g′) ∈ P

is introduced. We recall some properties of 〈., .〉 which are proved e.g. in [4].

Lemma 5 A relation T is symmetric (selfadjoint) if and only if it is a neutral (hypermaximal
neutral) subspace of (P , i〈., .〉). If T is symmetric, then T+/T endowed with the inner product
i〈., .〉 is a Krein space. If T has finite defect T+/T in fact is finite dimensional.

As Ψ(SP ) = S the mapping ψ̃ : S+
P /SP → P2/S (where S+

P denotes the adjoint of SP in P)
given by

ψ̃ : (f ; g) + SP 7→ Ψ(f ; g) + S for (f ; g) ∈ S+
P

is well defined.

Theorem 1 The mapping ψ̃ is a bijective isometry of S+
P /SP onto S+/S with respect to

the inner product 〈., .〉. Thus T 7→ Ψ(T ) establishes a bijective correspondence between
symmetric extensions of SP acting in P and symmetric extensions of S acting in P. In this
correspondence selfadjoint extensions of SP correspond to selfadjoint extensions of S.

Proof : We first show that in fact Ψ is an isometry with respect to 〈., .〉 of P2 into itself.
Let (f ; g), (f ′; g′) ∈ P2, then

〈(f ; g), (f ′; g′)〉 = [f, g′] − [g, f ′].

We have

〈Ψ(f ; g),Ψ(f ′; g′)〉 = [f + ([f, c0] + [g, d0])h0 − [f, h0]d1 + [g, h0]d0,

, g′ + ([f ′, c1] + [g′, d1])h0 + [f ′, h0]c1 − [g′, h0]c0]−

−[g + ([f, c1] + [g, d1])h0 + [f, h0]c1 − [g, h0]c0,

, f ′ + ([f ′, c0] + [g′, d0])h0 − [f ′, h0]d1 + [g′, h0]d0].

As (c0; d0), (c1; d1) ∈ SP = S+
P we have

[c0, d0] = [d0, c0], [c1, d1] = [d1, c1] and [c0, d1] = [d0, c1].

Now a straightforward computation shows that

〈(f ; g), (f ′; g′)〉 = 〈Ψ(f ; g),Ψ(f ′; g′)〉. (4.1)

As S+
P /SP is nondegenerated Ψ is injective. It remains to prove that Ψ is surjective, the

rest of the assertion will follow from Lemma 5.
First note that S+

P = SP [+̇](H⊥
n )2. Decompose P as

P = Hn[+̇](〈h0〉+̇〈h1〉)[+̇]H2.

Then
Ψ(S+

P ) = Ψ(SP ) + Ψ(〈h0〉
2) + Ψ(〈h1〉

2) + Ψ(H2
2),



and Ψ(SP ) = S and Ψ(H2
2) = H2

2. As S+ in P equals S∗ + H2
2 where S∗ is computed in

Pc = Hn[+̇](〈h0〉+̇〈h1〉) (Pc is defined as in Section 2), we have to show that

S∗ = S+̇Ψ(〈h0〉
2)+̇Ψ(〈h1〉

2). (4.2)

From (4.1) it follows that Ψ(S∗
P ) ⊆ S∗ and therefore the right hand side of (4.2) is contained

in S∗. We have

Ψ(〈h0〉
2) = 〈h0〉

2 and Ψ(〈h1〉
2) = 〈(h1 − d1; c1)〉 + 〈(d0; h1 − c0)〉.

Let (f ; g) ∈ S∗, f = f ′ + ϕ0h0 + ϕ1h1, g = g′ + γ0h0 + γ1h1 with f ′, g′ ∈ Hn. Then

(f ; g) − (ϕ0h0; γ0h0) − ϕ1(h1 − d1; c1) − γ1(d0; h1 − c0) =

= (f ′ + ϕ1d1 − γ1d0; g
′ − ϕ1c1 + γ1c0) ∈ S∗. (4.3)

Observe that S∗ ∩H2
n ⊆ S∗

P ∩H2
n = SP . Thus the pair (4.3) is an element of SP ⊆ S + 〈h0〉2

and therefore
(f ; g) ∈ S + 〈h0〉

2 + 〈(h1 − d1; c1)〉 + 〈(d0; h1 − c0)〉.

In Theorem 1 selfadjoint extensions of SP with empty resolvent set need not correspond to
selfadjoint extensions of S with empty resolvent set (compare Corollary 1 in the following
section).

5 Generalized resolvents

If H is a Pontryagin space, H ⊆ P and A is a selfadjoint extension of S in P with nonempty
resolvent set, the expression

P (A− z)−1|H,

where P denotes the orthogonal projection of P onto H, is called a generalized resolvent of
S. Clearly a generalized resolvent is determined by the expressions

[(A− z)−1u, v], u, v ∈ H. (5.1)

In our case, i.e. if H is degenerated, a orthogonal projection of P onto H does not exist. But
still the expressions (5.1) are meaningful, hence we will also speak of a generalized resolvent.

Let u, v ∈ H and write u = un + µ0h0, v = vn + ν0h0 with respect to the decomposition
H = Hn[+̇]〈h0〉. If u ∈ R (S − z) for all z ∈ C \ R, we have

[(A− z)−1u, v] = [(S − z)−1u, v] = [(SP − z)−1un, vn].

Hence, for determining the action of generalized resolvents we may restrict ourselves to
elements u, such that u 6∈ R (S − z) for some z ∈ C

+ and some z ∈ C
−. Equivalently

R (S − z) +̇〈u〉 = H,



i.e. u is a so called module element of S (compare [11]).
Put RP (z) = (SP − z)−1, let (c0; d0) and (c1; d1) be as in Proposition 3, and denote by

a(z) and b(z) the expressions

a(z) = (c1 − zc0) + z(d1 − zd0),

b(z) = RP (z)a(z) + (d1 − zd0).

Furthermore let χ(z) and q(z) be given as

χ(z) = h1 − b(z) − [b(z), c0 + zd0]h0

and
q(z) = −[a(z), χ(z)] = [a(z), b(z)],

respectively.
Let the set T of parameters be defined as the set of all functions τ(z), that admit a

representation
τ(z) = [(B − z)−1h, h],

with a selfadjoint (not necessarily minimal) relation in a π1-space and a neutral element h.
In the subsequent sections the class T will be characterized by analytic properties, in

fact it turns out that

T = N 0 ∪ {f ∈ N 1|0 ≤ lim
η→∞

iηf(iη) <∞}. (5.2)

Here N κ denotes the Nevanlinna class with κ negative squares, i.e. the set of all functions τ
meromorphic in C \ R with τ(z) = τ(z), such that the Nevanlinna kernel

Nτ (z, w) =
τ(z) − τ(w)

z − w

has exactly κ negative squares. We understand the (formal) function τ(z) = ∞ as an element
of N 0.

Theorem 2 The formula

[(A− z)−1u, v] = [(SP − z)−1un, vn] − [u, χ(z)]
1

− 1
τ(z)

+ q(z)
[χ(z), v] for τ(z) ∈ T (5.3)

establishes a bijective correspondence between the generalized resolvents of S and the set
(T ∪ {∞}) \ { 1

q(z)
} of parameters.

Proof : Let A be a selfadjoint extension of S and let A = Ψ(AP ), where AP is a selfadjoint
extension of SP . Assume first that ̺(AP ) 6= ∅ and that the functions [(AP − z)−1h0, h0] and

1
q(z)

do not coincide, i.e. that

[(AP − z)−1h0, h0] 6=
1

q(z)



for z ∈ M where M ⊆ C \ R is such that (C \ R) \M has no accumulation point in C \ R.
As SP itself is selfadjoint we may decompose in P2 the relation AP as AP = SP [+̇]A′

P where
A′

P is a selfadjoint relation in the π1-space H⊥
n . Hence (AP − z)−1 decomposes as

(AP − z)−1 =

(
RP (z) 0

0 R′
P (z)

)
:

Hn
[+̇]

H⊥
n

→
Hn
[+̇]

H⊥
n

,

where RP (z) = (SP − z)−1 and R′
P (z) = (A′

P − z)−1.
The resolvent R(z) = (A− z)−1 can be written as

R(z) = {( (g − zf) + ([f, c1 − zc0] + [g, d1 − zd0])h0 + [f, h0](c1 + zd1)−

−[g, h0](c0 + zd0); f + ([f, c0] + [g, d0])h0 − [f, h0]d1 + [g, h0]d0 )|(f ; g) ∈ AP}.

Let z ∈ ̺(AP )∩M and assume that (u; ũ) ∈ R(z). Then there exists an element (f ; g) ∈ AP ,
such that

u = (g − zf) + ([f, c1 − zc0] + [g, d1 − zd0])h0 + [f, h0](c1 + zd1) − [g, h0](c0 + zd0) (5.4)

and
ũ = f + ([f, c0] + [g, d0])h0 − [f, h0]d1 + [g, h0]d0. (5.5)

We will consider the components of (5.4) with respect to the decomposition

P = Hn[+̇](〈h0〉+̇〈h1〉)[+̇]P⊥
c . (5.6)

Let f = fn + ϕ0h0 + ϕ1h1 + fr and g = gn + γ0h0 + γ1h1 + gr with respect to (5.6), then we
have, as u ∈ H

0 = γ1 − zϕ1 , i.e. γ1 = zϕ1. (5.7)

Relation (5.4) thus takes the form

u = (g − zf) + ([fn, c1 − zc0] + [gn, d1 − zd0])h0 + ϕ1a(z) (5.8)

and shows that
un = (gn − zfn) + ϕ1a(z). (5.9)

By applying RP (z) to (5.9) we get

fn = RP (z)un − ϕ1RP (z)a(z) (5.10)

and, substituting into (5.9)

gn = un + zRP (z)un − ϕ1(zRP (z) + I)a(z). (5.11)

Now apply (AP − z)−1 to u: (5.8) implies that

(AP − z)−1u = f + ([fn, c1 − zc0] + [gn, d1 − zd0])R
′
P (z)h0 + ϕ1RP (z)a(z),

on the other hand (AP − z)−1u = RP (z)un + µ0R
′
P (z)h0. Multiplying by h0 we obtain

µ0[R
′
P (z)h0, h0] = ϕ1 + ([fn, c1 − zc0] + [gn, d1 − zd0])[R

′
P (z)h0, h0]. (5.12)



Using (5.10) and (5.11) we find

[fn, c1 − zc0] + [gn, d1 − zd0] = [RP (z)un, c1 − zc0]−

−ϕ1[RP (z)a(z), c1 − zc0] + [un, d1 − zd0] + z[RP (z)un, d1 − zd0]−

−ϕ1[(zRP (z) + I)a(z), d1 − zd0] =

= [RP (z)un, a(z)] + [un, d1 − zd0] − ϕ1([RP (z)a(z), a(z)] + [a(z), d1 − zd0]) =

= [un, b(z)] − ϕ1[a(z), b(z)].

Thus ϕ1 computes from (5.12) as

ϕ1 = −
µ0 − [un, b(z)]

− 1
τ(z)

+ [a(z), b(z)]
= −

[u, χ(z)]

− 1
τ(z)

+ q(z)
, (5.13)

where τ(z) = [R′
P (z)h0, h0].

Consider in particular the element u = 0. Due to (5.13) we have ϕ1 = 0, and (5.8)
together with (5.10) and (5.11) shows that g = zf . Since z ∈ ̺(AP ) and (f ; g) = (f ; zf) ∈
AP we find f = g = 0. Hence ũ = 0, i.e. R(z) is an operator. This implies that z ∈ ̺(A)
and we find

̺(A) ⊇ ̺(AP ) ∩M,

in particular ̺(A) 6= ∅. Since R(z) is an operator we may write ũ = R(z)u.
We obtain from (5.5) and (5.10)

[R(z)u −RP (z)un, u] = [f − fn, u] − ϕ1[(d1 − zd0), u] − ϕ1[RP (z)a(z), u] =

= ϕ1(µ0 − [b(z), u]),

thus, using (5.13)

[R(z)u, u] = [RP (z)un, un] − [χ(z), u]
1

− 1
τ(z)

+ q(z)
[u, χ(z)].

Consider the case that ̺(AP ) 6= ∅ but assume that τ(z) coincides with 1
q(z)

. For z ∈ ̺(AP )

let (f ′; g′) ∈ A′
P be such that g′ − zf ′ = h0 and put

fn = −[f ′, h0]RP (z)a(z),

gn = −[f ′, h0](zRP (z) + I)a(z).

It is checked by a straightforward calculation using the above formulas and the fact that
[f ′, h0] = τ(z) 6= 0, that f ′ + fn ∈ ker (A− z) Therefore ̺(A) = ∅.

It remains to study the case that ̺(AP ) = ∅, i.e. ker (AP − z) = ker (A′
P − z) 6= {0}.

As H⊥
n is a π1-space, we have that ker (A′

P − z) is constant on C \ R and has dimension 1
(see [3]). If ker (A′

P − z) = 〈h0〉, i.e. (h0; zh0) ∈ A′
P , we have h0 ∈ ker (A− z) and therefore

̺(A) = ∅.
If ker (A′

P − z) 6= 〈h0〉 write ker (A′
P − z) = 〈h〉. Then h is neutral and h ∈ A′

P (0), thus
h ∈ R (A′

P − z)◦ for all z ∈ C \ R. As H⊥
n is a π1-space R (A′

P − z) is positive semidefinite



and we can assume that h and h0 are skewly linked. This shows that h0 6∈ R (A′
P − z). We

will prove that ̺(A) 6= ∅, i.e. ker (A− z) = {0}. Assume on the contrary that (f ; g) ∈ AP

such that Ψ(f ; g) ∈ ker (A− z). Let f = fn + f ′ and g = gn + g′ with respect to P =
Hn[+̇]H⊥

n . The fact that Ψ(f ; g) ∈ ker (A− z) implies

(g′ − zf ′) + ([fn, c1 − zc0] + [gn, d1 − zd0])h0 = 0. (5.14)

As h0 6∈ R (AP − z) we find g′ − zf ′ = 0 which shows that f ′ ∈ ker (AP − z) = 〈h〉, i.e.
f ′ = λh. Furthermore

0 = (gn − zfn) + [f, h0](c1 + zd1) − [g, h0](c0 + zd0) = (gn − zfn) + λa(z),

i.e. gn − zfn = −λa(z). Thus we have fn = −λRP (z)a(z) and gn = −λ(zRP (z) + I)a(z).
Now (5.14) shows that

0 = [fn, c1 − zc0] + [gn, d1 − zd0] = [gn − zfn, b(z)] = −λq(z).

If q(z) 6= 0 we find λ = 0, thus f = 0 and g = 0, a contradiction.
Let h = α0h0 + α1h1 + hr. If q(z) = 0 for some z ∈ C \ R consider the element

(α1RP (z)a(z) − h;α1(zRP (z) + I)a(z) − zh) ∈ AP .

By substituting this element into the relations (5.4) and (5.5), it follows by a straightforward
computation that

ker (A− z) = R(z)(0) 6= {0}.

In order to compute [(A− z)−1u, u] consider (5.8). It shows that

µ0h0 = (g′ − zf ′) + ([fn, c1 − zc0] + [gn, d1 − zd0])h0.

Again, as h0 6∈ R (A′
P − z), we have g′ − zf ′ = 0, f ′ = λh and

µ0 − ([fn, c1 − zc0] + [gn, d1 − zd0]) = 0.

Substituting (5.10) and (5.11) we obtain

µ0 − ([un, b(z)] − λq(z)) = 0

as λ = ϕ1 and therefore

λ = −
[u, χ(z)]

q(z)
.

From (5.5) and (5.10) we find

[R(z)u, u] = [RP (z)un, un] − [u, χ(z)]
1

q(z)
[χ(z), u].

This corresponds to the parameter τ(z) = ∞.

From the proof of Theorem 2 we have the following



Corollary 1 Let A ⊇ S and AP ⊇ SP be selfadjoint relations, A = Ψ(AP ). If ̺(AP ) 6= ∅
then ̺(A) 6= ∅ if and only if [(AP − z)−1h0, h0] 6=

1
q(z)

, in fact

(̺(A) ∩ ̺(AP )) \ R = {z ∈ ̺(AP ) \ R|τ(z) = [(AP − z)−1h0, h0] 6=
1

q(z)
}.

If ̺(AP ) = ∅ then ̺(A) 6= ∅ if and only if for one and hence for all z ∈ C \ R

ker (AP − z) 6= 〈h0〉.

In this case
̺(A) \ R = {z ∈ C \ R|q(z) 6= 0}.

In the following we give an interpretation of the expressions χ(z) and q(z) as the defect
elements and Q-function, respectively, of a certain symmetric relation S1 and a selfadjoint
extension A1 of S1. In fact

S1 = Ψ(SP +̇(0 × 〈h1〉)),

and
A1 = Ψ(SP +̇(0 × 〈h0, h1〉)).

By Corollary 1 we have ̺(A1) 6= ∅.

Proposition 4 We have 〈χ(z)〉 = R (S1 − z)⊥ and

χ(z) = (I + (z − w)(A1 − z)−1)χ(w).

The function q(z) is the Q-function of S1 and A1, i.e.

q(z) − q(w)

z − w
= [χ(z), χ(w)]. (5.15)

Proof : We first prove that χ(z) ⊥ R (S1 − z). Note

S1 = S + 〈(d0; h1 − c0)〉,

thus
R (S1 − z) = R (S − z) + 〈h1 − (c0 + zd0)〉. (5.16)

We have
[χ(z), h1 − (c0 + zd0)] = [b(z), c0 + zd0] + [b(z),−(c0 + zd0)] = 0,

which shows that χ(z) is orthogonal to the second summand on the right hand side of (5.16).
Furthermore

R (S − z) = {(g − zf) + ([f, c1 − zc0] + [g, d1 − zd0])h0|(f ; g) ∈ SP},

and

[χ(z), (g − zf) + ([f, c1 − zc0] + [g, d1 − zd0])h0] = ([c1 − zc0, f ] + [d1 − zd0, g])−

−[b(z), g − zf ] = ([c1 − zc0, f ] + [d1 − zd0, g]) − [a(z), f ]−



−[d1 − zd0, g − zf ] = 0

shows that also χ(z) ⊥ R (S − z). Thus the first assertion is proved.
Denote by AP the selfadjoint relation

AP = SP +̇(0 × 〈h0, h1〉)),

and by R(z) and RP (z) the resolvents

R(z) = (A1 − z)−1 and RP (z) = (AP − z)−1,

respectively. The next step in the proof of Proposition 4 is to prove the relation

(I + (z − w)R(z))χ(w) = χ(z). (5.17)

We reconsider the proof of Theorem 2 in the case that A = A1 and AP defined as above
(A = Ψ(AP )), but with an element

u = un + µ0h0 + µ1h1,

which is not any more contained in H. As for (f ; g) ∈ AP we have ϕ0 = ϕ1 = 0 (5.7) reads
as

γ1 = µ1,

and therefore the relations (5.4) and (5.5) become

u = (g − zfn) + ([fn, c1 − zc0] + [gn, d1 − zd0])h0 − µ1(c0 + zd0) (5.18)

and
R(z)u = fn + ([fn, c0] + [gn, d0])h0 + µ1d0. (5.19)

Applying RP (z) to both sides of (5.18) yields (note that RP (z)h0 = RP (z)h1 = 0)

RP (z)u = fn − µ1RP (z)(c0 + zd0), (5.20)

which gives together with (5.19)

R(z)u = RP (z)un + µ1(RP (z)(c0 + zd0) + d0) + ([fn, c0] + [gn, d0])h0. (5.21)

From (5.20) we get

[fn, c0] = [RP (z)un, c0] + µ1[RP (z)(c0 + zd0), c0]

and
[fn, d0] = [RP (z)un, d0] + µ1[RP (z)(c0 + zd0), d0],

which implies together with (5.18)

[gn, d0] = z[RP (z)un, d0] + zµ1[RP (z)(c0 + zd0), d0] + µ1[c0 + zd0, d0] + [un, d0].

Substituting into (5.21) this shows that

R(z)u = RP (z)un + µ1(RP (z)(c0 + zd0) + d0)+



+[un + µ1(c0 + zd0), d0 +RP (z)(c0 + zd0)]h0. (5.22)

The element χ(w) is explicitly given as

χ(w) = h1 − RP (w)((c1 − wc0) + w(d1 − wd0)) − (d1 − wd0)−

−[RP (w)((c1 − wc0) + w(d1 − wd0)) + (d1 − wd0), c0 + wd0]h0.

Using (5.22) we obtain

(I + (z − w)R(z))χ(w) = (I + (z − w)RP (z))χ(w) + (z − w)(RP (z)(c0 + zd0) + d0+

+[(c0 + zd0) − RP (w)((c1 − wc0) + w(d1 − wd0)) − (d1 − wd0), d0 +RP (z)(c0 + zd0)]h0) =

= h1 +RP (z)(−(c1 − wc0) − w(d1 − wd0) − (z − w)(d1 − wd0) + (z − w)c0 + z(z − w)d0)−

−(d1 − wd0) + (z − w)d0 + [RP (w)((c1 − wc0) + w(d1 − wd0)) + (d1 − wd0),

,−c0 − wd0 + (w − z)d0 + (w − z)RP (z)(c0 + zd0)]h0+

+(z − w)[c0 + zd0, d0 +RP (z)(c0 + zd0)]h0 =

= h1 − RP (z)((c1 − zc0) + z(d1 − zd0)) − (d1 − zd0) − [RP (z)((c1 − wc0)+

+w(d1 − wd0)) + (I + (z − w)RP (z))(d1 − wd0) − (z − w)d0 − RP (z)((z − w)(c0 + zd0)),

, c0 + zd0]h0 = χ(z).

To obtain the last but one equality sign we have used the relation

[c0 + zd0, d0] = [d0, c0 + zd0],

which holds as (c0; d0) ∈ SP = S+
P , and by the resolvent identity

(z − w)RP (z)RP (w) = RP (z) − RP (w).

Thus (5.17) is proved, and therefore χ(z) parametrizes the defect spaces of S1 appropriately.
In order to show that q(z) is the Q-function of S1 and A1 it thus suffices to prove the

relation (5.15). As a straightforward computation shows the function q(z) is real, i.e.

q(z) = q(z) = −[χ(z), a(z)].

We compute
q(z) − q(w)

z − w
= −

[χ(z), a(z)] − [χ(w), a(w)]

z − w
=

= −
[(I + (z − w)R(z))χ(w), a(z)] − [χ(w), a(w)]

z − w
= −[χ(w), R(z)a(z)]−

−[χ(w),
a(z) − a(w)

z − w
]

(5.22)
=

(5.22)
= −[χ(w), RP (z)a(z) + [a(z), d0 +RP (z)(c0 + zd0)]h0] − [χ(w),−c0 + d1 − (w + z)d0] =

SP =S+
P= −[c0 + zd0, d1 − zd0] − [c0 + zd0, RP (z)a(z)] − [b(w), c0 + wd0] + [b(w), b(z)] =

= [χ(w), χ(z)] = [χ(z), χ(w)].

Thus all assertions of Proposition 4 are proved.



Remark 4 Due to Proposition 4 we have q ∈ N κ′ with κ′ ≤ κ+1, if κ denotes the negative
index of H. Using the characterization (5.2) of the set of parameters, we find that the
exception of the parameter τ(z) = 1

q(z)
in Theorem 2 occurs if and only if q is a rational

function of degree κ′ or q is rational and of degree κ′ + 1 and 0 ≤ limη→∞
iη

q(iη)
<∞.

Proposition 4 shows in particular that q is not identically zero. As

R (S1 − z) = R (S − z) + 〈h1 − (c0 + zd0)〉

and u ∈ H we have u ∈ R (S1 − z) if and only if u ∈ R (S − z). Since we have assumed that
u is a module element for S, u is also a module element for S1, in particular [u, χ(z)] 6= 0 for
one and hence for all z ∈ C

+ (C−) with possible exception of an isolated set (compare [11]).
Theorem 2 leads to a parametrization of the u-resolvents of S, i.e. of the functions of the

form (u ∈ H)
ru(z) = [(A− z)−1u, u].

With a similar proof as in Section 3 of [11] we find

Proposition 5 The u-resolvents of S are parametrized by

ru(z) =
w11(z)(−

1
τ(z)

) + w12(z)

w21(z)(−
1

τ(z)
) + w22(z)

, τ(z) ∈ T , (5.23)

where

w11(z) =
[RP (z)un, un]

[u, χ(z)]
, w12(z) =

[RP (z)un, un]q(z)

[u, χ(z)]
− [χ(z), u],

w21(z) =
1

[u, χ(z)]
, w22(z) =

q(z)

[u, χ(z)]
.

The matrix

W (z) =

(
w11(z) w12(z)
w21(z) w22(z)

)

is the u-resolvent matrix of S1. It satisfies the equation

W (z)JW (w)∗ − J

z − w
=

(
Q(z)
−P (z)

)
(Q(w)∗ − P (w)∗)

where J =

(
0 −1
1 0

)
and (f = fn + ϕ0h0 + ϕ1h1)

P (z)f =
[f, χ(z)]

[u, χ(z)]
.

Q(z)f = [RP (z)fn, un] −
[f, χ(z)]

[u, χ(z)]
[RP (z)un, un] + ϕ1[RP (z)(f0 + zg0) + g0, un].



6 Analytic characterization of the parameters

In the following two sections we prove that the class T of parameters is given by (5.2) and
investigate some properties of these parameter functions.

Theorem 3 The function τ is an element of

T 1 = N 0 ∪ {τ ∈ N 1|0 ≤ lim
η→∞

iητ(iη) <∞},

if and only if τ admits a representation

τ(z) = [(A− z)−1v, v], (6.1)

where A is a selfadjoint relation in a π1-space P with ̺(A) 6= ∅ and v ∈ P is neutral.

I.e. we have T 1 = T , when T is defined as in Section 5. The proof of Theorem 3 is split up
into several lemmata.

Assume that τ admits a representation (6.1).

Lemma 6 Let τ(z) = [(A − z)−1v, v] with A, v as in Theorem 3, then τ ∈ T 1. If τ ∈ N 1

then A(0) is positive definite or A is an operator.

Proof : Note that
Nτ (z, w) = [(A− z)−1v, (A− w)−1v]. (6.2)

As the negative index of P is 1 we have τ ∈ N 0 ∪ N 1.
Assume that f ∈ N 1. Then (6.2) and {(A− z)−1v|z ∈ ̺(A)} ⊆ D (A) shows that D (A)

contains a negative element. Then D (A) is nondegenerated, as otherwise it would contain

a two dimensional nonpositive subspace. Therefore A(0) (= D (A)
⊥
) is positive definite or

trivial. Furthermore (see [3])
P = D (A)[+̇]A(0), (6.3)

and we may decompose A as
A = As[+̇]A∞

where As is a selfadjoint operator in D (A) and A∞ = {0} × A(0). Hence the resolvent
(A− z)−1 can be written as an operator matrix

(A− z)−1 =

(
(As − z)−1 0

0 0

)
:
D (A)

[+̇]

A(0)
→

D (A)
[+̇]

A(0)
.

Let v = vs + v∞ be the decomposition of v with respect to (6.3), then

τ(z) = [(A− z)−1v, v] = [(As − z)−1vs, vs].

Since 0 = [v, v] = [vs, vs] + [v∞, v∞] and [v∞, v∞] ≥ 0 we have [vs, vs] ≤ 0. As
limη→∞ iη(As − iη)−1vs = −vs (see [4], Theorem 2.4) we have limη→∞ iητ(iη) ≥ 0.

In order to prove the converse implication of the theorem we consider first the case that
τ ∈ N 1 ∩ T 1.



Lemma 7 Let τ ∈ N 1 ∩ T 1, then τ has a representation (6.1).

Proof : As 0 ≤ limη→∞ iητ(iη) < ∞ implies that limη→∞ τ(iη) = 0 and that
limη→∞ y| Im τ(iη)| exists, a result of [10] shows that there is a π1-space Ps, a selfadjoint
operator As and an element u ∈ Ps, such that

τ(z) = [(As − z)−1u, u].

Due to 0 ≤ limη→∞ iητ(iη) <∞ and [4], Theorem 2.4 we have

[u, u] = − lim
η→∞

iητ(iη) ≤ 0.

If u is neutral we are done, otherwise define

P = Ps[+̇]〈h〉

where [h, h] = 1, and
A = As[+̇](0 × 〈h〉).

Then A is a selfadjoint relation in the π1-space P and we have ker ((A− z)−1) = 〈h〉 and

R ((A− z)−1) ⊆ Ps. Let v = u+ h
√
−[u, u], then

τ(z) = [(As − z)−1u, u] = [(A− z)−1v, v],

and [v, v] = 0.

In the following let τ ∈ N 0. Denote by Lτ the inner product space

Lτ = {
∑

z∈C\R

ξzez|ξz ∈ C, ξz 6= 0 only for finitely many z ∈ C \ R}

with the inner product defined by

[ez, ew] = Nτ (z, w).

Remark 5 It is well known that τ admits the representation

τ(z) = τ(z0) + (z − z0)[(I + (z − z0)(Aτ − z)−1ez0 , ez0 ]

with a selfadjoint relation Aτ with z0 ∈ ̺(Aτ ) acting in a certain π0-space Pτ . The space
Pτ is obtained as the completion

Pτ = ̂Lτ/L
◦
τ .

For details on this construction see [9] and [10].

Definition 4 Let L be the inner product space

L = Lτ +̇〈h0, h1〉



endowed with the inner product given by

[f, g]L = [f, g]Lτ
for f, g ∈ Lτ ,

[ez, h0]L = [h0, ez]L = τ(z) and

[ez , h1]L = [h1, ez]L = 0 for z ∈ C \ R

and where h0 and h1 are skewly linked, i.e.

[h0, h1]L = [h1, h0]L = 1 and [h0, h0]L = [h1, h1]L = 0.

If no confusion can occur we will drop the index at the inner product. Note that the elements
h0 and h1 are by definition linearly independent of each other and of Lτ .

Lemma 8 The inner product space L is a π1-lineal and

L◦ = {f − [f, h0]h1|f ∈ L◦
τ}.

Proof : Obviously the element h0−h1 is negative. Assume that G ⊆ L is a two dimensional
negative subspace. Then, by a dimension argument,

G ∩ (Lτ [+̇]〈h1〉) 6= {0}

which yields a contradiction as τ ∈ N 0 implies that Lτ [+̇]〈h1〉 is positive semidefinite.
To prove the second assertion let f ′ = f + ϕ0h0 + ϕ1h1 ∈ L◦ where f ∈ Lτ , then

ϕ0 = [f + ϕ0h0 + ϕ1h1, h1] = 0

and
0 = [f + ϕ0h0 + ϕ1h1, h0] = ϕ1 + [f, h0],

thus f ′ = f − [f, h0]h1. The converse inclusion follows similarly.

Definition 5 Let S be the relation

〈(0;h1), (ez; h0 + zez)|z ∈ C \ R〉 ⊆ L2.

Lemma 9 The relation S is symmetric.

Proof : Recall that τ is real, i.e. τ(z) = τ(z). Let z 6= w, then

[ez, h0 + wew] − [h0 + zez , ew] = [ez, h0] − [h0, ew]−

−(z − w)[ez, ew] = τ(z) − τ(w) − (z − w)
τ(z) − τ(w)

z − w
= 0.

If z = w we have
[ez, h0 + zez] − [h0 + zez , ez] = τ(z) − τ(z) = 0.

As h1 ⊥ ez for each z ∈ C \ R the lemma is proved.

Let P be the π1-space constructed from L (see [9]), and denote by A the relation A =
S/(L◦)2 ⊆ P2.



Remark 6 Note that, even if Lτ is nondegenerated, the closure of Lτ in P need not be
isomorphic to Pτ (compare Corollary 2).

Lemma 10 The relation A is selfadjoint and has a nonempty resolvent set. In fact C \ R ⊆
̺(A).

Proof : Clearly A is a closed symmetric relation. Let z, w ∈ C \ R, then

(S − z)−1h0 = ez, (6.4)

(S − z)−1h1 = 0 and

(S − z)−1ew =
ew − ez

w − z
for w 6= z.

For z ∈ C \ R let
Cz(S) = {(g − zf ; g − zf)|(f ; g) ∈ S}

be the Cayley transform of S. Since S is symmetric Cz is an isometric operator. As τ is
continuous at z we have ew → ez in the inner product topology of L if z → w (see [9]). This
implies together with

D (Cz(S)) = R (S − z) and R (Cz(S)) = R (S − z)

that D (Cz(S)) and R (Cz(S)) are dense in L. Thus

Cz(S)(L◦) ⊆ L◦,

and therefore Cz(S)/(L◦)2 is an isometric densely defined operator in P . Its closure Vz is an
everywhere defined continuous isometry and the relation

Cz(S/(L
◦)2) = Cz(S)/(L◦)2

shows that Vz is the Cayley transform of A. As

(A− z)−1 =
1

z − z
(Vz − I)

we have z ∈ ̺(A) and A is selfadjoint.

From the definition of the inner product on P and from (6.4) it is obvious that τ admits a
representation of the form (6.1):

τ(z) = [(A− z)−1h0, h0].

The preceeding lemmata imply Theorem 3.



7 Some properties of the functions τ ∈ T

If we restrict ourselves in Theorem 3 to minimal relations, the connection between selfad-
joint relations and parameter functions becomes (up to unitary equivalence) a one to one
correspondence.

Definition 6 Let A be a selfadjoint relation in a Pontrjagin space P with ̺(A) 6= ∅ and let
v ∈ P. Then A is called v-minimal (or, equivalently, v is called a generating element for A)
if

〈v, (A− z)−1v|z ∈ ̺(A)〉 = P.

Proposition 6 Let A1,P1, v1 (A2,P2, v2) be such that A1 (A2) is v1 (v2) -minimal and v1

(v2) is neutral. Then

[(A1 − z)−1v1, v1] = [(A2 − z)−1v2, v2], z ∈ ̺(A1) ∩ ̺(A2)

implies that A1 and A2 are unitary equivalent.
For any τ ∈ T (τ 6= 0) there exists a π1-space P, a neutral element v ∈ P and a

v-minimal selfadjoint relation A, such that τ is represented as u-resolvent.

Proof : The uniqueness part of the assertion is proved as in [10]. Also it is clear that
τ can be represented by a minimal relation, simply if one restricts A to the Pontrjagin
space constructed from the lineal 〈v, (A − z)−1v|z ∈ ̺(A)〉. Thus it remains to prove that
〈v, (A − z)−1v|z ∈ ̺(A)〉 actually is a π1-lineal. Assume on the contrary that it is positive
semidefinite. As v is neutral v is in fact isotropic, in particular

v ⊥ (A− z)−1v,

i.e. τ = 0, a contradiction.

In the following we investigate the relation between τ ∈ T and a representing relation A
more closely.

Proposition 7 Let τ ∈ T and let

τ(z) = [(A− z)−1v, v]

with a selfadjoint relation A in a π1-space P and a neutral element v. Assume that A is
v-minimal. Then

(i) τ ∈ N 1 if and only if A(0) = {0} or A(0) is positive definite.

(ii) τ ∈ N 0 and
lim
η→∞

η|τ(iη)| <∞ (7.1)

if and only if A(0) is negative definite.

(iii) τ ∈ N 0 and the limit (7.1) does not exist if and only if A(0) is neutral.



Proof : If τ ∈ N 1, then Lemma 6 can be applied and shows that A(0) = {0} or A(0) is
positive definite.

Assume that A(0) = {0}, then

lim
η→∞

iη(A− iη)−1v = −v.

Thus
P = 〈(A− z)−1v|z ∈ ̺(A)〉,

which shows that τ ∈ N 1. Assume that A(0) (6= {0}) is positive definite, then P =
D (A)[+̇]A(0) and therefore D (A) is a π1-space. As

〈(A− z)−1v|z ∈ ̺(A)〉 ⊆ D (A) (7.2)

and the left hand side of (7.2) has codimension at most 1 in P, we have equality in (7.2)
and we find τ ∈ N 1.

Let τ ∈ N 0 satisfy (7.1). Then there exists a Hilbert space P0, a selfadjoint operator A0

and a generating element u ∈ P0 exists, such that

τ(z) = [(A0 − z)−1u, u].

Let P1 = P0[+̇]〈h〉 where [h, h] = −1, and set

A1 = A0+̇(0 × 〈h〉). (7.3)

Then τ(z) = [(A1 − z)−1v, v] where v = u+ h
√

[u, u]. As A0 is u-minimal A1 is v-minimal.

Obviously A1(0) (= 〈h〉) is negative definite. Proposition 6 implies that A(0) is also negative
definite.

If A(0) is negative definite, then P = D (A)[+̇]A(0) and D (A) is positive definite. Thus
(7.2) shows that τ ∈ N 0. Corresponding to (6.3) A can be decomposed as

A = A0[+̇]A∞

and τ(z) = [(A0 − z)−1u, u] where v = u+ v∞ with u ∈ D (A), v∞ ∈ A(0) and where A0 is a
selfadjoint operator in the Hilbert space D (A). Now [7] shows that (7.1) holds.

Due to the minimality assumption we have in any case dimA(0) ≤ 1. Therefore A(0) is
either positive or negative definite or neutral. Hence (iii) is a consequence of (i) and (ii).

The (up to unitary equivalence) unique v-minimal relation representing a function τ ∈ T
can be determined explicitly.

Remark 7 In case (i) of Proposition 7 the operator As in Lemma 7 can be chosen minimal.
Then A is v-minimal.

Proposition 8 In case (iii) of Proposition 7 the relation A constructed in Section 6 (see
Definition 5) is h0-minimal. If case (ii) of Proposition 7 occurs the relation A is not h0-
minimal. Then the subspace

P1 = Lτ +̇〈h0〉,

which does not contain h1, is a π1-space and reduces A to a h0-minimal relation.



Proof : Consider the construction given in Section 6. If L◦ 6= {0} we identify f ∈ L with
its canonical image in L/L◦. We have

Lτ = 〈(A− z)−1h0|z ∈ C \ R〉.

Note that, as h1 ⊥ Lτ but [h1, h0] = 1, the element h0 is not in Lτ . Hence Lτ itself has
codimension 1 or 2. We consider the alternative h1 ∈ Lτ , or h1 6∈ Lτ . This means

h1 ∈ Lτ +̇〈h0〉 = Lτ +̇〈h0〉,

or h1 6∈ Lτ +̇〈h0〉, i.e. whether A is h0-minimal or not.
If h1 ∈ Lτ , the subspace Lτ has codimension 1 and thus

A(0) = D (A)
⊥

= Lτ
⊥

= 〈h1〉.

Since then A is h0-minimal, Proposition 7 shows that case (iii) occurs. Note that in this
case Lτ is positive semidefinite and degenerated.

If h1 6∈ Lτ , then Lτ has codimension 2 and is positive definite as P is a π1-space. Thus

A(0) = Lτ
⊥

= 〈h1, f + h0〉

for some f ∈ Lτ , f 6= 0. We have

P1 = Lτ +̇〈h0〉 = Lτ [+̇]〈f + h0〉, (7.4)

and
0 = [f, f + h0] = [f, f ] + [f, h0],

which shows that

[f + h0, f + h0] = [f + h0, f ] + [f, h0] = −[f, f ] < 0.

Therefore the right hand side of (7.4) is a fundamental decomposition, which shows that P1

is a π1-space, in particular nondegenerated. Since P1 is invariant for each resolvent of A,
the restriction of A to P1 is again selfadjoint and clearly 〈h0〉-minimal. As

(A ∩ P2
1)(0) = 〈f + h0〉

Proposition 7 shows that case (ii) occurs.

In case (ii) the relation A ∩ P2
1 is unitary equivalent to the relation (7.3).

Corollary 2 The closure of Lτ
P

coincides with Pτ (compare Remark 6 and Remark 5) if
and only if case (ii) of Proposition 7 occurs.

Proof : The trace topology on Lτ induced by P coincides with the topology induced by the

inner product of Lτ if and only if Lτ
P

is nondegenerated.



Due to Satz 1.5 of [10] (see also [7]) case (ii) of Proposition 7 occurs if and only if τ admits
a representation of the form

τ(z) = [(A0 − z)−1u, u]

with a selfadjoint operator A0 in a π0-space P0 and an element u ∈ P0. There A0 and P0

can be chosen as in Remark 5, A0 = Aτ , P0 = Pτ and u = (Aτ − z0)ez0 .
Denote by Φ the functional Φ : Lτ → C defined as

Φ(ez) = τ(z).

Proposition 9 Case (ii) of Proposition 7 occurs if and only if Φ induces a continuous (well
defined) functional on Pτ . In this case u is the unique element representing Φ as

Φ(f) = [f, u]Pτ
.

Proof : For the definition of Lτ , Pτ and Aτ recall Remark 5. Assume first that case (ii)

occurs. Then Φ induces a well defined functional on Lτ/L
◦
τ : Let

n∑
i=1

λiezi
∈ L◦

τ , then it is

shown in [14] that

τ(z) =

n∑
i=1

λiτ(zi)
∏

j 6=i(z − zj)

n∑
i=1

λi

∏
j 6=i(z − zj)

.

As in particular limη→∞ τ(iη) = 0 we must have

n∑

i=1

λiτ(zi) = 0,

i.e. Φ(
n∑

i=1
λiezi

) = 0. It is shown in [10] that ez0 ∈ D (Aτ − z0) and that τ(z) = [(Aτ −

z)−1u, u], where u = (Aτ − z0)ez0 . As

(Aτ − z)−1u = (Aτ − z)−1(Aτ − z0)ez0 = ez

we have
Φ(ez) = τ(z) = [(Aτ − z)−1u, u] = [ez, u],

in particular Φ is continuous.
Conversely, let Φ induce a continuous functional on Pτ , then there exists an element

u ∈ Pτ , such that Φ(ez) = τ(z) = [ez, u]. Due to [10] it is enough to show that

(ez0 ; u) ∈ Aτ − z0 , i.e. (ez0 ; u+ z0ez0) ∈ Aτ = A+
τ .

Indeed, we have for (ez − ez0 ; zez − z0ez0) ∈ Aτ :

[ez − ez0 , u+ z0ez0] − [zez − z0ez0, ez0 ] = [ez, u] − [ez0 , u]+

+(z0 − z0)[ezez0 ] + (z0 − z0)[ez0, ez0 ] = τ(z) − τ(z0)+

+(τ(z0) − τ(z)) + (τ(z0) − τ(z0)) = 0.



8 An example

In this section we apply the preceeding results to a situation which arises from a certain
extrapolation problem. We shall briefly recall some definitions and results, for an exact
treatment see [6], [10] and [12].

Let 0 < a ≤ ∞ and κ ∈ N0, then Pκ;a denotes the set of all continuous complex valued
functions F : (−2a, 2a) → C such that

F (−t) = F (t) for 0 ≤ t ≤ 2a

holds and that the kernel
FF (s, t) = F (t− s)

has κ negative squares for 0 ≤ t, s ≤ 2a.
A function F ∈ Pκ;a generates a πκ-space: The vector space La(F ) consisting of all

arbitrarily often differentiable functions

f : (−a, a) → C

which have compact support, endowed with the inner product

[f, g] =
∫ a

−a

∫ a

−a
F (t− s)f(t)g(s) dtds

is a πκ-lineal. Thus its completion Pa(F ) is a πκ-space.
Let Aa be the closure of the symmetric operator defined by

f → −if ′ for f ∈ La(F ).

Then the relation
−i
∫ ∞

0
F̂ (t)e−itz dt = [(A− z)−1u, u], (8.1)

where u is a certain element of Pa(F ), establishes a bijective correspondence between contin-
uations of F ∈ Pκ;a to Pκ;∞and minimal selfadjoint extensions A of Aa acting in a πκ-space.

Let 0 < a <∞ and consider the function

F (t) = 1 − |t| for − 2a ≤ t ≤ 2a.

This example has been considered by H.Langer and Z.Sasvari. If a < 1 (a > 1) we have
F ∈ P0;a (F ∈ P1;a), if a = 1 the space La(F ) is positive semidefinite and degenerated. In
the case a < 1 (a > 1) F admits infinitely many extensions to P0;∞ (P1;∞), if a = 1 there
exists exactly one extension to P0;∞. The extensions (in case a 6= 1) are connected by (8.1)
to the u-resolvents of Aa. In fact the classical theory of resolvent matrices shows (see [11])
that the relation

−i
∫ ∞

0
F̂ (t)e−itz dt =

w11(z)(−
1

τ(z)
) + w12(z)

w21(z)(−
1

τ(z)
) + w22(z)

,

where

W (z) =




sin az−z cos az
(a−1)z

(1−(a−1)z2) sinaz−az cos az

z2

z cos az
a−1

(a− 1)z sin az + cos az


 ,



establishes a one to one correspondence between the extensions of F |(−2a,2a) in P0;∞ if a < 1
(P1;∞ if a > 1) and the set N 0 of parameters.

We will determine the u-resolvents of Aa in the case a = 1, i.e. when Aa is an operator
in a degenerated space. This yields a parametrization of the extensions of F |(−2,2) in P1;∞.

In order to do the necessary computations we introduce a - unitarily equivalent - model.
Denote by H the vector space

H = L2[−1, 1]+̇C

endowed with the inner product
[(

f
ϕ

)
,

(
g
γ

)]
= 2(f, g) + ϕγ − (f, 1[−1,1])γ − ϕ(1[−1,1], g),

where (., .) denotes the usual inner product on L2[−1, 1]. Here 1[α,β] denotes the function

1[α,β](t) =

{
1 for t ∈ [α, β]
0 for t 6∈ [α, β]

.

A straightforward computation shows that

H◦ = 〈h0〉 with h0 =

(
1
2
1[−1,1]

1

)
,

and we put
Hn = L2[−1, 1]

to obtain a decomposition
H = Hn[+̇]〈h0〉

as in Section 2, (2.1). Further denote by S the symmetric operator in H defined by

S

(
f
ϕ

)
=

(
−if ′

0

)
for

(
f
ϕ

)
∈ D (S)

where

D (S) = {

(
f
f(1)

)
∈ H|f abs.cont., f ′ ∈ L2[−1, 1], f(−1) = 0}.

Lemma 11 The operator S satisfies the conditions (2.2) and (2.3) and has defect numbers
(1, 1). Moreover we have σ(SP ) ⊆ R.

Proof : As S is an operator (S(0) = 0) (2.2) is clearly satisfied. In order to show that S
satisfies (2.3) it suffices, due to Lemma 1, to note that

h0 =
1

2

(
1[−1,1]

2

)
6∈ D (S) .

We have for z ∈ C \ R

R (S − z) = {

(
−if ′ − zf
−zf(1)

)
|f abs.cont., f ′ ∈ L2[−1, 1], f(−1) = 0}.



As −if ′ − zf = g, f(−1) = 0 is uniquely solvable

codim R (S − z) = 1,

hence S has defect (1, 1).
To prove σ(SP ) ⊆ R it suffices to show that h0 6∈ R (S − z) whenever z 6∈ R. Assume

that

2h0 =

(
1|[−1,1]

2

)
= (S − z)

(
f
f(1)

)
=

(
−if ′ − zf
−zf(1)

)
.

The equation
−if ′ − zf = 1, f(−1) = 0

has the solution

f(t) =
1

z
(eiz(t+1) − 1).

We compute f(1) = 1
z
(e2iz − 1), hence −zf(1) = 2 implies that −e2iz = 1, and we find

z =
2k + 1

2
π ∈ R.

The projection P of H onto Hn with kernel H◦ is given by

P

(
f
ϕ

)
= f −

ϕ

2
1[−1,1].

Lemma 12 The operator SP is given by

SPf = −if ′ for f ∈ D (SP ) ,

where
D (SP ) = {f ∈ L2[−1, 1]|f abs.cont., f ′ ∈ L2[−1, 1], f(−1) = −f(1)}.

Proof : We have

SP = {(

(
f − f(1)

2
1[−1,1]

0

)
;

(
−if ′

0

)
)|

(
f
f(1)

)
∈ D (S)} =

= {(f ;−if ′)|f abs.cont., f ′ ∈ L2[−1, 1], f(−1) = −f(1)}.

Also the resolvent of SP can be computed explicitly.

Lemma 13 Let f ∈ L2[−1, 1], then

(SP − z)−1f =
ieizt

2 cos z
(e−iz

∫ t

−1
f(s)e−izs ds− eiz

∫ 1

t
f(s)e−izs ds). (8.2)



Proof : We are looking for an element g ∈ D (SP ), such that

(SP − z)g = −ig′ − zg = f.

A solution of this equation is of the form

g(t) = ieizt
∫ t

−1
f(s)e−izs ds+ ceizt

with c ∈ C. From the condition g ∈ D (SP ) we find

ce−iz = g(−1) = −g(1) = −ieiz
∫ 1

−1
f(s)e−izs ds− ceiz,

which implies

c =
−ieiz

2 cos z

∫ 1

−1
f(s)e−izs ds.

Thus

g =
ieizt

2 cos z

(
2 cos z

∫ t

−1
f(s)e−izs ds− eiz

∫ 1

−1
f(s)e−izs ds

)
=

=
ieizt

2 cos z

(
e−iz

∫ t

−1
f(s)e−izs ds− eiz

∫ 1

t
f(s)e−izs ds

)
.

We proceed determining elements (c0; d0) and (c1; d1) in Proposition 3.

Lemma 14 With the notation of Proposition 4 we have

c0(t) =
1

2 cosh 1
sinh t, d0(t) =

−i

2 cosh 1
cosh t, (8.3)

c1(t) = 0, d1(t) = 0.

Proof : As R (S) ⊆ Hn we have (c1; d1) = 0. Furthermore (c0; d0) ∈ SP , i.e. d0(t) = −ic0(t)′.
In order to prove the remaining assertion it suffices to show that with c0 and d0 as in (8.3)
the relation Ψ(SP ) = S holds. We have

Ψ(SP ) = {(

(
f
0

)
+ ([f, c0] + [−if ′,−id0])

(
1
2
1[−1,1]

1

)
;

(
−if ′

0

)
)|f ∈ D (SP )},

and

[f,
1

2 cosh 1
sinh t] + [−if ′,

−i

2 cosh 1
cosh t] =

=
1

2 cosh 1

(
2
∫ 1

−1
f(t) sinh t dt+ 2

∫ 1

−1
f(t)′ cosh t dt

)
=

1

cosh 1
[f(t) cosh t]|1t=−1 =

=
1

cosh 1
(f(1) cosh 1 − f(−1) cosh(−1)) = 2f(1).



Thus

Ψ(SP ) = {(

(
f + f(1)1[−1,1]

2f(1)

)
;

(
−if ′

0

)
)|f ∈ D (SP )} = S.

Now we put

u =

(
1[0,1]

1

)
=

(
un(t)

0

)

︸ ︷︷ ︸
∈Hn

+

(
1
2
1[−1,1]

1

)

︸ ︷︷ ︸
∈〈h0〉

,

where

un(t) =

{
−1

2
for − 1 ≤ t < 0

1
2

for 0 ≤ t ≤ 1
.

Lemma 15 With the notation of Section 5 we have

q(z) = z2 tan z,

χ(z) = h1 −
iz

2 cos z
eizt + z tan z · h0

and

[(SP − z)−1un, un] =
tan z

z2
−

1

z
.

Proof : We first compute a(z):

a(z) = (c1 − zc0) + z(d1 − zd0) =
z

2 cosh 1
(iz cosh t− sinh t).

Using (8.2) and the relations

∫
sinh se−izs ds = −

1

2

(
e−(iz−1)s

iz − 1
−
e−(iz+1)s

iz + 1

)
(8.4)

∫
cosh se−izs ds = −

1

2

(
e−(iz−1)s

iz − 1
+
e−(iz+1)s

iz + 1

)
(8.5)

a straightforward computation shows that

(SP − z)−1a(z) =
iz

2 cos z
eizt −

iz

2 cosh 1
cosh t.

Therefore we have

b(z) =
iz

2 cos z
eizt.

Using again (8.4) and (8.5) we find

q(z) = [a(z), b(z)] = 2
∫ 1

−1

z

2 cosh 1
(iz cosh t− sinh t)

−iz

2 cos z
e−izt dt =

=
−iz2

2 cosh 1 cos z

∫ 1

−1
(iz cosh t− sinh t)e−izt dt = z2 tan z.



As c1 = d1 = 0

[b(z), c0 + zd0] = −
1

z
[b(z), a(z)] = −

1

z
q(z) = z tan z

we find

χ(z) = h1 −
iz

2 cos z
eizt + z tan z · h0.

We proceed computing [(SP − z)−1un, un]. For t ≥ 0 we find from (8.2) by an elementary
computation

(SP − z)−1un(t) =
eiz(t−1)

2z cos z
−

1

2z
,

for t < 0

(SP − z)−1un(t) = −
eiz(t+1)

2z cos z
+

1

2z
.

Therefore

[(SP − z)−1un, un] = 2
∫ 1

−1
(SP − z)−1un(s)un(s) ds =

= 2
∫ 1

0
(
eiz(t−1)

2z cos z
−

1

2z
)
1

2
ds+ 2

∫ 0

−1
(−

eiz(t+1)

2z cos z
+

1

2z
)(−

1

2
) ds =

= −
1

z
+

tan z

z2
.

Theorem 2 and Proposition 5 now imply the following result:

Proposition 10 The formula

−i
∫ ∞

0
F̂ (t)e−itz dt =

w11(z)(−
1

τ(z)
) + w12(z)

w21(z)(−
1

τ(z)
) + w22(z)

,

where

W (z) =

(
w11(z) w12(z)
w21(z) w22(z)

)
=

(
sin z
z2 − cos z

z
− cos z − z sin z

cos z z2 sin z

)
, (8.6)

establishes a bijective correspondence between extensions of F |(−2,2) in P0;∞ ∪ P1;∞ and the
set T ∪ {∞} of parameters. The unique extension of F |(−2,2) in P0;∞ corresponds to the
parameter τ(z) = 0.

Proof : Substituting the result of Lemma 15 into the formulas of Proposition 5 yields (8.6).
As q(z) is not a rational function Remark 4 shows that the exclusion of 1

q(z)
from the set of

parameters does not occur.
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