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A Nevanlinna-Pick type interpolation problem for generalized Nevanlinna functions is considered.
We prescribe the values of the function and its derivatives up to a certain order at finitely many
points of the upper half plane. An operator theoretic approach is used to parametrize the
solutions of this interpolation problem by means of selfadjoint extensions of a certain symmetry.

1 Introduction

A function f is said to be of Nevanlinna class N π
ν if f is meromorphic in the open upper

half plane C
+ and the so called Nevanlinna kernel

Nf (z, w) =
f(z) − f(w)

z − w
for z, w ∈ ̺(f)

has π positive and ν negative squares. Here ̺(f) denotes the domain of analyticity of f in
C

+ and π and ν are nonnegative integers or ∞. More explicitly this means that for each
number n ∈ N and points z1, . . . , zn ∈ ̺(f) the quadratic form

n∑

i,j=1

Nf (zi, zj)ξiξj (1)

has at most π positive (ν negative) squares, and that for some choice of n and z1, . . . , zn this
upper bound is attained. If there is no upper bound for the number of positive (negative)
squares of the forms (1) put π = ∞ (ν = ∞). We consider only such classes N π

ν where at
least one index is finite. Denote by N ν the union N ν =

⋃
∞

π=0 N
π
ν where ν is finite.

A multiple point interpolation problem is a problem where not only values for the function
itself, but also for its derivatives up to a certain order are prescribed. The interpolation data
thus consist of numbers n ∈ N, k1, . . . , kn ∈ N0 and points z1, . . . , zn ∈ C

+ and wij ∈ C for
j = 0, . . . , ki and i = 1, . . . , n. A solution is a function f satisfying

f (j)(zi) = wij for j = 0, . . . , ki and i = 1, . . . , n. (2)



In this note we develop an operator theoretic method to describe the solutions of the
interpolation problem (2) which are contained in some Nevanlinna class. This generalizes
the well known operator method of Krein and Langer concerning simple point interpolation
which has been developed in [17] and [20].

In the classical case the so called Pick matrix plays an important role. We introduce in
Section 2 a generalized Pick matrix for multiple point interpolation problems. Furthermore
we recall the operator representation of an N ν-function f and compute the derivatives of f
by means of this representation. This motivates the structure of the generalized Pick matrix.
In Section 3 a model space, i.e. an inner product space H and a symmetric operator S, is
associated to the given data and investigated. After these considerations we are in position
to prove the main results (Theorem 1, Proposition 2 and Proposition 3) of this note which
is done in Section 4. They establish a bijective correspondence between the solutions of the
multiple point interpolation problem and the selfadjoint extensions of the above mentioned
symmetric operator. More precisely, our result can be formulated as follows (here e10 is a
certain element of H):

The formula
fS̃(z) = w10 + (z − z1)[(I + (z − z1)(S̃ − z)−1)e10, e10]. (3)

establishes a bijective correspondence between the solutions of the interpolation problem
(2) within N π

ν and the selfadjoint extensions S̃ of S acting in a Pontryagin space P ⊇ H
with positive (negative) index π (ν), which contain z1, . . . , zn in their resolvent set and are
e10-minimal.

In the proof some results of [16], [17] and [22] are used.
Similar results for the simple point case and some generalizations to interpolation prob-

lems by matrix valued functions can be found e.g. in [6], [8], [13], [14], [20] or [22]. In
the definite case also some generalizations of Nevanlinna-Pick type problems to the case of
so-called Nevanlinna-pairs are given in [1], [2] and [11].

In the classical case one can give a parametrization of the solutions of (2) by means of
a fractional linear transformation involving a parameter function, e.g. by starting from a
formula like (3) and using the theory of so-called resolvent matrices (see e.g. [18]), i.e. apply
Krein’s formula for the generalized resolvents of a symmetry. Since in our case the space
H is in general degenerated this theory cannot be applied. For some partial results in this
direction (concerning different types of interpolation problems) see [3], [11], [12] and [19].

We would like to remark that interpolation by rational functions is also covered by the
theory developed here, as the set of (real) rational functions equals the union of all sets
N π

ν with both indices finite (see e.g. [21]). The generalized Pick matrix is in this context
sometimes replaced by the so called generalized Löwner matrix which has a quite similar
structure. Of course rational interpolation problems are well studied, see e.g. [4], [5] or [9].
For further approaches to rational interpolation problems and an extensive coverage of the
literature we refer to [7].

We will use some results concerning indefinite inner product spaces and their linear
operators which can be found e.g. in [10] or [15].



2 Derivatives of N ν-functions

Let f ∈ N ν , then it is well known (see e.g. [17]) that f has a representation by means of a
selfadjoint relation S̃ in a Pontryagin space P with negative index ν. This representation
can be obtained as follows: Denote by ̺(f) the domain of analyticity of f in C

0 (= C
+∪C

−)
and let Hf be the inner product space consisting of all formal sums

∑

z∈̺(f) xzez where all
but finitely many coefficients vanish, endowed with the inner product given by

[ez, ew] =
f(z) − f(w)

z − w
for z, w ∈ ̺(f), z 6= w,

[ez, ez] = f ′(z) for z ∈ ̺(f).

Then P is the Pontryagin space obtained from Hf by completion of the factor space Hf/Hf
◦,

where Hf
◦ denotes the isotropic part of Hf . Let Ã be the operator in Hf with domain

D
(

Ã
)

= {
∑

z∈̺(f) xzez ∈ Hf |
∑

z∈̺(f) xz = 0} which acts as Ã(
∑

z∈̺(f) xzez) =
∑

z∈̺(f) zxzez.

Then S̃ is obtained from Ã by factorization and closure, and the relation

f(z) = f(z0) + (z − z0)[(I + (z − z0)(S̃ − z)−1)ez0, ez0 ] (4)

holds where z0 is a fixed point of ̺(f). Here the resolvent set of S̃ coincides with the domain
of analyticity of f . Note that the function f (and thus also its derivatives) is real, i.e.
f(z) = f(z). This can be proved by a straightforward computation.

Denote by s(z) the expression s(z) = (I +(z−z0)(S̃−z)−1)ez0 . From (4) we can compute
the derivatives of f by means of derivatives of s(z):

Lemma 1 Let f ∈ N ν, and let S̃ be such that the representation (4) holds. Then for k ≥ 1
we have

f (k)(z) = (z − z0)[s
(k)(z), ez0 ] + k[s(k−1)(z), ez0 ].

The proof of Lemma 1 is immediate by an easy computation.
Suppose now we are given finitely many points z1, . . . , zn ∈ C

+ ∩ ̺(f) and numbers
k1, . . . , kn ∈ N0, and we are interested in the values of f (k)(zi) for k = 0, . . . , ki and i =
1, . . . , n. We may assume that z0 = z1. As then s(z1) = ez1 = ez0 , Lemma 1 shows that the
information about the values f (k)(zi) is contained in the subspace

G = 〈s(k)(zi)|k = 0, . . . , ki, i = 1, . . . , n〉

of P. To determine the inner product [., .] on G explicitly we will use the following relation.

Lemma 2 The Nevanlinna kernel of f can be computed via s(z):

f(z) − f(w)

z − w
= [s(z), s(w)].

Proof : We will repeatedly use the formula

g(z)h(z) − g(w)h(w)

z − w
=

g(z) − g(w)

z − w
h(z) + g(w)

h(z) − h(w)

z − w
.



Note that the function f defined by (4) is real, i.e. f(z) = f(z). Thus

f(z) − f(w)

z − w
=

f(z) − f(w)

z − w
=

(z − z0)[s(z), ez0 ] − (w − z0)[s(w), ez0 ]

z − w
=

= [s(z), ez0 ] + (w − z0)[
s(z) − s(w)

z − w
, ez0].

As

[
s(z) − s(w)

z − w
, ez0 ] =

(w − z0)(w − z)−1ez0 − (z − z0)(z − z)−1ez0

w − z
=

= (w − z)−1ez0 + (z − z0)
(w − z)−1ez0 − (z − z)−1ez0

w − z
=

= (w − z)−1ez0 + (z − z0)(w − z)−1(z − z)−1ez0 ,

we find

f(z) − f(w)

z − w
= [ez0 , ez0] + [(z − z0)(z − z)−1ez0 , ez0] + (w − z0)[(w − z)−1ez0, ez0 ]+

+(w − z0)[(z − z0)(w − z)−1(z − z)−1ez0 , ez0 ]. (5)

On the other hand we have

[s(z), s(w)] = [ez0 + (z − z0)(z − z)−1ez0, ez0 + (w − z0)(w − z)−1ez0 ] =

= [ez0 , ez0 ] + [(z − z0)(z − z)−1ez0 , ez0] + [ez0 , (w − z0)(w − z)−1ez0 ]+

+[(z − z0)(z − z)−1ez0 , (w − z0)(w − z)−1ez0 ]. (6)

Obviously the right hand sides of (5) and (6) coincide.

From the above lemma we find that

[s(k)(zi), s
(l)(zj)] =

∂k

∂zk

∂l

∂wl

(

f(z) − f(w)

z − w

)∣
∣
∣
∣
∣

z=zi
w=zj

(7)

holds. Thus the information about the values of f and its derivatives at the points zi is
contained in the generalized Pick matrix associated with the points z1, . . . , zn

P = (P ij)n
j,i=1 (8)

where P ij is a block of size (kj + 1) × (ki + 1) with entries

pij
lk =

∂k

∂zk

∂l

∂wl

(

f(z) − f(w)

z − w

)∣
∣
∣
∣
∣

z=zi
w=zj

for l = 0, . . . , kj, k = 0, . . . , ki. (9)

In the case k1 = . . . = kn = 0 we obtain the classical Pick matrix.
The following lemma gives some information about the action of S̃ on G.



Lemma 3 We have

(i)
n∑

i=1
xis(zi) ∈ D

(

S̃
)

whenever
n∑

i=1
xi = 0, and

(
n∑

i=1

xis(zi),
n∑

i=1

xizis(zi)) ∈ S̃.

(ii) s(k)(zi) ∈ D
(

S̃
)

whenever k ≥ 1, and

(s(k)(zi), zis
(k)(zi) + ks(k−1)(zi)) ∈ S̃.

Proof : Note that

n∑

i=1

xis(zi) = (
n∑

i=1

xi)

︸ ︷︷ ︸

=0

e10 +
n∑

i=1

xi(zi − z1)(S̃ − zi)
−1e10,

and that
((S̃ − zi)

−1e10, e10 + zi(S̃ − zi)
−1e10) ∈ S̃.

Thus

(
n∑

i=1

xi(zi − z1)(S̃ − zi)
−1e10,

n∑

i=1

xi(zi − z1)e10 +
n∑

i=1

xi(zi − z1)zi(S̃ − zi)
−1e10) ∈ S̃

which proves (i), as
n∑

i=1
xiz1e10 = 0 and thus the right hand side equals

n∑

i=1
xizis(zi).

As
s(k)(zi) = (zi − z1)k!(S̃ − zi)

−(k+1)e10 + k!(S̃ − zi)
−ke10

we find s(k) ∈ D
(

S̃
)

and, as

ks(k−1)(zi) = (zi − z1)k!(S̃ − zi)
−ke10 + k!(S̃ − zi)

−(k−1)e10)

holds:
(ks(k−1)(zi), s

(k)(zi)) ∈ (S̃ − zi)
−1

which yields the assertion.

3 An inner product space connected to the interpola-

tion data

Consider now a multiple point interpolation problem, i.e. let n ∈ N, k1, . . . , kn ∈ N0,
z1, . . . , zn ∈ C

k and wik ∈ C for k = 0, . . . , ki and i = 1, . . . , n be given. From this data we
can buildt the generalized Pick matrix P associated with the points z1, . . . , zn.



Lemma 4 The entries pij
lk (l = 0, . . . , kj, k = 0, . . . , ki; i, j = 1, . . . , n) of the generalized

Pick matrix associated with the points z1, . . . , zn are given explicitly as

pij
lk =

k∑

h=0

(

k

h

)

wih

(−1)k−h(k + l − h)!

(zi − zj)k+l+1−h
+

l∑

h=0

(

l

h

)

wjh

(−1)l−h(k + l − h)!

(zj − zi)k+l+1−h
. (10)

Proof : As the entries pij
lk equal ∂k

∂zk
∂l

∂wl

(

f(z)−f(w)
z−w

)∣
∣
∣
∣

z=zi
w=zj

it suffices to proof the formula

∂k

∂zk

∂l

∂wl

(

f(z) − f(w)

z − w

)

=
k∑

h=0

(

k

h

)

f(z)(h) (−1)k−h(k + l − h)!

(z − w)k+l+1−h
+

+
l∑

h=0

(

l

h

)

f(w)(h)
(−1)l−h(k + l − h)!

(w − z)k+l+1−h
. (11)

In order to prove (11) use induction on l and k. For l = k = 0 the assertion is clearly true.
As (11) is symmetric with respect to l and k we only have to do the inductive step for one of
l and k, say, k 7→ k + 1, i.e. we have to differentiate the right hand side of (10) with respect
to z. We then obtain

k∑

h=0

(

k

h

)

(−1)k−h(k + l − h)![f(z)(h+1) 1

(z − w)k+l+1−h
+ f(z)(i)−(k + l + 1 + h)

(z − w)k+l+2−h
]+

+
k∑

h=0

(

l

h

)

f(w)(h)(−1)l−h(k + l − h)!(k + l + 1 − h)
1

(w − z)k+l+2−h
=

=
k∑

h=1

[

(

k

h − 1

)

+

(

k

h − 1

)

︸ ︷︷ ︸

=(k+1
h )

](−1)(k+1)−h((k + 1) + l − h)!f(z)(h) 1

(z − w)(k+1)+l+1−h
+

+

(

k

k

)

︸ ︷︷ ︸

=(k+1
k+1)

l!f(z)(k+1) 1

(z − w)l+1
+

(

k

0

)

︸ ︷︷ ︸

(k+1
0 )

(−1)k+1((k + 1) + l)!f(z)
1

(z − w)(k+1)+l+1−h
+

+
k∑

h=0

(

l

h

)

f(w)(h)(−1)l−h((k + 1) + l − h)!
1

(w − z)(k+1)+l+1−h

which proves the assertion.

Taking the subspace G as a model we define an inner product space associated with the
interpolation data.

Definition 1 Let H be the inner product space of all formal sums

H = {
∑

k=0,...,ki
i=1,...,n

xikeik|xik ∈ C}

endowed with the inner product defined by

[eik, ejl] = pij
lk.



Remark 1 If we identify the element
∑

k=0,...,ki
i=1,...,n

xikeik with the column vector

(x10, . . . , x1k1 ; x20, . . . , . . . , xnkn
)T , (12)

then the Gram matrix of [., .] on H is the generalized Pick matrix associated with z1, . . . , zn.
Note that, as the elements eik are per definitionem linearly independent we have dimH =

n∑

i=1
(ki + 1). In our model G in general only the inequality dimG ≤

n∑

i=1
(ki + 1) holds.

We define an operator S acting in H (compare Lemma 3).

Definition 2 Let S be the operator with domain

D (S) = {
∑

k=0,...,ki
i=1,...,n

xikeik|
n∑

i=1

xi0 = 0} =

= 〈
n∑

j=1

xj0ej0, eik|
n∑

j=1

xj0 = 0, k = 1, . . . , ki, i = 1, . . . , n〉,

which acts as

S(
n∑

i=1

xi0ei0) =
n∑

i=1

zixi0ei0 (13)

and, for k = 1, . . . , ki, i = 1, . . . , n

Seik = zieik + kei,k−1. (14)

Remark 2 If we again identify the element
∑

k=0,...,ki
i=1,...,n

xikeik with the column vector (12), S

admits a representation as a block matrix

S ⊆ (Sij)
n
i,j=1 (15)

where the blocks Sij are of size (kj + 1)× (ki + 1), the off-diagonal blocks contain only zeros
and the diagonal blocks are of the form

Sii =










zi 1 0
. . .

. . .

. . . ki

0 zi










for i = 1, . . . , n.

Before we investigate some properties of S we give another lemma.

Lemma 5 The entries of the generalized Pick matrix satisfy the following relations (i, j ∈
{1, . . . , n}):

(i) (zi − zj)p
ij
lk = −kpij

l,k−1 + lpij
l−1,k for l, k ≥ 1,

(ii) (zi − zj)p
ij
l0 = −wjl + lpij

l−1,0 for l ≥ 1 and similarly (zi − zj)p
ij
0k = −kpij

0,k−1 + wik for
k ≥ 1,



(iii) (zi − zj)p
ij
00 = wi0 − wj0.

Proof : We use the explicit formula for pij
lk given in Lemma 4. Then we find

(zi − zj)p
ij
lk =

k∑

h=0

(

k

h

)

wih

(−1)k−h(k + l − h)!

(zi − zj)k+l−h
−

l∑

h=0

(

l

h

)

wjh

(−1)l−h(k + l − h)!

(zj − zi)k+l−h
,

lpij
l−1,k =

k∑

h=0

l

(

k

h

)

wih

(−1)k−h(k + l − 1 − h)!

(zi − zj)k+l−h
−

l−1∑

h=0

l

(

l

h

)

wjh

(−1)l−h(k + l − 1 − h)!

(zj − zi)k+l−h

and

kpij
l,k−1 =

k−1∑

h=0

k

(

k

h

)

wih

(−1)k−h(k + l − 1 − h)!

(zi − zj)k+l−h
−

l∑

h=0

(

l

h

)

wjh

(−1)l−h(k + l − 1 − h)!

(zj − zi)k+l−h
.

Comparing the coefficients of the term

wih

(−1)k−h

(zi − zj)k+l−h

for h = 0, . . . , k − 1 in the first sums of the above right hand sides we find that we have to
prove

(k + l − 1 − h)!(l

(

k

h

)

+ k

(

k − 1

h

)

) = (k + l − h)!

(

k

h

)

.

This relation is proved by direct computation. The coefficients of

wjh

(−1)l−h

(zj − zi)k+l−h

of the second sums on the right hand sides give (for h = 0, . . . , l − 1)

(k + l − h)!

(

l

h

)

= (k + l − 1 − h)!(l

(

l − 1

h

)

+ k

(

l

h

)

)

which is also proved by direct computation. For h = k the coefficients equal obviously.
To prove the second assertion of the lemma we compute (see Lemma 4)

(zi − zj)p
ij
l0 = l!

wi0

(zi − zj)l
−

l∑

h=0

(

l

h

)

wjh

(−1)l−h(l − h)!

(zj − zi)l−h

and

lpij
l−1,0 = l(l − 1)!

wi0

(zi − zj)l
− l

l−1∑

h=0

(

l − 1

h

)

wjh

(−1)l−h(l − 1 − h)!

(zj − zi)l−h
.

Putting these expression together finishes the proof.
The last assertion is an immediate consequence of the definition of pij

00.



Proposition 1 The operator S is symmetric and has no eigenvectors.

Proof : The matrix (15) representing S (or, more exactly, the extension of S given by (15))
obviously has the eigenvalues zi with corresponding eigenvectors ei0 (i = 1, . . . , n). But
these are exactly the elements excluded by the choice of D (S). Thus S has no nonzero
eigenvectors.

To prove that S is symmetric we have to show that

[Sx, y] = [x, Sy] (16)

for x, y ∈ D (S). First consider the case x = eik and y = ejl where k, l ≥ 1. Then

[Sx, y] = [zieik + kei,k−1, ejl] = zi[eik, ejl]+

+k[ei,k−1, ejl] = z1p
ij
lk + kpij

l,k−1,

and similarly
[x, Sy] = zjp

ij
lk + lpij

l−1,k.

Lemma 5 thus implies (16). If x =
n∑

i=1
xi0ei0 where

n∑

i=1
xi0 = 0 and y = ejl with l ≥ 1 we find

[Sx, y] =
n∑

i=1

xi0[ziei0, ejl] =
n∑

i=1

xi0ei0

and

[x, Sy] =
n∑

i=1

xi0[ei0, zjejl + lej,l−1] =

=
n∑

i=1

xi0zjp
ij
l0 + l

n∑

i=1

xi0p
ij
l−1,0.

Thus we find, again using Lemma 5

[Sx, y] − [x, Sy] =
n∑

i=1

xi0 ((zi − zj)p
ij
l0 + lpij

l−1,0)
︸ ︷︷ ︸

=−f(zj)(l)

. (17)

The right hand side of (17) equals 0, as
n∑

i=1
xi0 = 0. Finally consider the case that x =

n∑

i=1
xi0ei0 and y =

n∑

j=1
yj0ej0 where

n∑

i=1
xi0 =

n∑

j=1
yi0 = 0. We have

[Sx, y] − [x, Sy] =
n∑

i,j=1

xi0yj0(zi − zj)p
ij
00 =

=
n∑

i=1

xi0f(zi)
n∑

j=1

yj0 −
n∑

j=1

yj0f(zj)
n∑

i=1

xi0 = 0.



Lemma 6 For each i ∈ {1, . . . , n} and k ∈ {0, . . . , ki} we have e10 ∈ R
(

(S − zi)
−(k+1)

)

. In
fact for i 6= 1

(S − zi)
−(k+1)e10 =

k∑

h=0

(−1)k−h

h!(zi − z1)k−h+1
eih +

(−1)k+1

(zi − z1)k+1
e10 (18)

holds, and for i = 1 we have

(S − zi)
−(k+1)e10 =

1

k!
e1k.

Proof : To prove the first assertion use induction on k. If k = 0 (18) follows immediately
from the definition (13). Then we compute

(S̃ − zi)
−1(S̃ − zi)

−(k+1)e10 =
k∑

h=0

(−1)k−h

h!(zi − z1)k−h+1

1

h + 1
eih +

(−1)k+1

(zi − z1)k+1

ei0 − e10

zi − z1

=

=
k+1∑

h=0

(−1)(k+1)−h

h!(zi − z1)(k+1)−h+1
eih +

(−1)(k+1)+1

(zi − z1)(k+1)+1
e10 = (S̃ − zi)

−(k+2)e10

where we used (13) and (14).
The second assertion is clear from (14).

4 Correspondence of solutions and extensions

In this section we will prove the main results of the present note which establish a connection
between the solutions of the interpolation problem (2) and the selfadjoint extensions of S
acting in some Pontryagin space extending H. These results follow similar as in the classical
case (see [17], [20], [22]).

But first we have to recall some notions. We call an extension S̃ of S acting in a
Pontryaginspace P 〈e10〉-minimal if

〈(S̃ − z)−1e10|z ∈ ̺(S̃)〉 = P.

We call two extensions S̃1 and S̃2 acting in Pontryaginspaces P1 and P2, respectively 〈e10〉-
unitary equivalent if there is a unitary operator U : P1 → P2 which satisfies Ue10 = e10

(remember that both, P1 and P2, are extensions of H) and S̃1 = U−1S̃2U .

Theorem 1 Let n ∈ N, z1, . . . , zn ∈ C
+, k1, . . . , kn ∈ N0 and wik ∈ C for k = 0, . . . , ki, i =

1, . . . , n be given. Assume that the generalized Pick matrix is regular. Then the solutions of
the multiple point interpolation problem

f (k)(zi) = wik for k = 0, . . . , ki and i = 1, . . . , n

within a Nevanlinna class correspond to the selfadjoint (relational) extensions S̃ of the sym-
metric operator S which operate in a Pontryagin space P extending H and contain the points
z1, . . . , zn in their resolvent set. This connection is established by the formula

S̃ 7→ fS̃(z) = w10 + (z − z1)[(I + (z − z1)(S̃ − z)−1)e10, e10].



Proof : Assume that f is a solution of the considered problem, then the results of Section
2 show that there exist S̃ and P extending S and H, respectively and satisfy the required
conditions. The fact that z1, . . . , zn ∈ ̺(S̃) follows similar as in [22].

Suppose conversely that S̃ extends S and that z1, . . . , zn ∈ ̺(S̃). In order to compute
f (k)(zi) we have to compute (use similar notation as in Section 2) s(k)(zi) for k = 0, . . . , ki.
In case k = 0 we find from Lemma 6 (i 6= 1)

(I + (zi − z1)(S̃ − z)−1)e10 = e10 + (zi − z1)
ei0 − e10

z1 − z1
= ei0

(the case i = 1 is obvious) whereas for k ≥ 1 a straightforward computation again using
Lemma 6 implies

∂k

∂zk
(I + (z − z1)(S̃ − z)−1)|z=zi

e10 = eik.

Thus (iii) of Lemma 5 shows

f(zi) = w10 + (zi − z1) [ei0, e10]
︸ ︷︷ ︸

=pi1
00

= wi0,

and (ii) of Lemma 5 together with Lemma 1 shows (k = 1, . . . , ki)

f (k)(zi) = (zi − z1) [s(k)(zi), e10]
︸ ︷︷ ︸

=pi1
0k

+k [s(k−1)(zi), e10]
︸ ︷︷ ︸

=pi0
0,k−1

= wik.

Proposition 2 The correspondence S̃ 7→ fS̃ between extensions and solutions becomes bi-
jective if we consider only 〈e10〉-minimal extensions of S and do not distinguish between
〈e10〉-unitary equivalent extensions.

Proof : It is proved in [22] that two minimal extensions induce the same function if and
only if they are 〈e10〉-unitary equivalent. As we can restrict our attention to 〈e10〉-minimal
extensions in any case, the assertion is clear.

There is also a connection between the indices of the space P and the indices of the Nevan-
linna class fS̃ belongs to. Although the following result is well known (see e.g. [17] or [22])
and does not use the fact that H ⊂ P we include it, especially with view to Remark 3.

Proposition 3 If S̃ acts in a Pontryagin space with index (π, ν) then the corresponding
solution fS̃ is in a class N π′

ν′ with π′ ≤ π and ν ′ ≤ ν. If we assume that S̃ is minimal the
full number of positive and negative squares is attained, i.e. π′ = π and ν ′ = ν.

Remark 3 Assume that the generalized Pick matrix has π0 positive and ν0 negative eigen-
values and is regular. Then there exist solutions of (2) in those classes N π

ν where π ≥ π0

and ν ≥ ν0.
On the other hand it is obvious that in classes N π

ν where π < π′ or ν < ν′ no solutions
can exist.



References

[1] D.Alpay, P.Bruinsma, A.Dijksma, H.de Snoo: Interpolation problems, extensions
of symmetric operators and reproducing kernel spaces I,
Operator Theory: Advances and Applications 50 (1991), 35-82.

[2] D.Alpay, P.Bruinsma, A.Dijksma, H.de Snoo: Interpolation problems, extensions
of symmetric operators and reproducing kernel spaces II,
Integral Equations Operator Theory 14 (1991), 465-500.

[3] D.Alpay, H.Dym: On applications of reproducing kernel spaces to the Schur algorithm
and rational J-unitary factorization,
Operator Theory: Advances and Application 18 (1986), 89-160.

[4] A.C.Antoulas, B.D.O.Anderson: On the scalar rational interpolation problem,
IMA Journal of Math.Control and Information 3 (1986), 61-88.

[5] A.C.Antoulas, J.A.Ball, J.Kang, J.C.Willems: On the solution of the minimal
rational interpolation problem,
Linear Algebra Applications 137/138 (1990), 511-573.

[6] J.A.Ball: Interpolations problems of Pick-Nevanlinna and Löwner Type for meromor-
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