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1 Introduction

Let f be a complex valued function which is meromorphic in the open upper half
plane C+. We consider the kernel

Nf(z, z
′) =

f(z) − f (z ′)

z − z ′
(z, z′ ∈ Df). (1)

Here and in the following Df always denotes the set of all points of C+ where f
is holomorphic. Recall that by definition the kernel Nf has κ (∈ IN0) positive
(negative, respectively) squares on Df if the following two conditions are satisfied:

1. For each k ∈ IN and points ζ1, . . . ,ζk ∈ Df the hermitian form

k
∑

i,j=1

Nf(ζi, ζj)ξiξj (2)

has at most κ positive (negative, respectively) squares.

2. For some k ∈ IN and points ζ1, . . . ,ζk ∈ Df the hermitian form (2) has
exactly κ positive (negative, respectively) squares.

Definition 1 Let π, ν ∈ IN0. Denote by N
π
ν the set of all functions f which are

meromorphic in C+ and such that the kernel Nf has π positive and ν negative
squares on Df . Further let N

π and Nν be the sets of those functions where only
the number of positive (negative, respectively) squares is prescribed and equal to
π (ν, respectively).

The sets Nν were introduced e.g. in [15]. In particular, N0 is the Nevanlinna class
consisting of all functions f holomorphic in C+, such that ℑf(z) ≥ 0 for z ∈ C+.
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It was shown essentially by G.Pick (see [16] and [17]) that for given distinct
points z1, . . . ,zn ∈ C+ and points w1, . . . ,wn ∈ C a function f ∈ N0 satisfying

f(zi) = wi for i = 1, . . . ,n (3)

exists if and only if the so called Pick matrix

IP =

(

wi − wj

zi − zj

)n

j,i=1

(4)

is nonnegative definite, in this case f is uniquely determined if and only if IP

is singular. We will refer to a function f satisfying (3) as a solution of the
interpolation problem with data (z1, w1), . . . ,(zn, wn) ∈ C+ × C. In this context
the points z1, . . . ,zn will always be distinct.

In this note we are interested in the case that IP is singular. If, e.g., IP has
rank m (< n) and is nonnegative definite it is shown that besides the unique
solution of the interpolation problem in the set N0, which is a rational function,
there is no solution in any set Nν with 0 < ν < n − m.

In fact this result is proved in greater generality: Let π0 ( ν0, respectively) be
the number of positive (negative, respectively) squares of the Pick matrix IP and
let rank IP = m with m = π0 + ν0 < n. Then the interpolation problem (3) has
a unique solution in the set N

π0

ν0
, if and only if the data points do not belong to

some exactly described ‘small’ exceptional set. This solution is given explicitly
as a rational function. If either π0 < π < π0 + (n −m) or ν0 < ν < ν0 + (m − n)
then (3) has no solution in the set N

π ∪Nν . In a following note it will be shown
that solutions of the problem (3) in the set N

π
ν with π ≥ π0 + (m − n) and

ν ≥ ν0 + (m − n) always exist.
These results are proved in Section 3, using in fact ideas of G.Pick (see [16]),

and in Section 4, using some geometric properties of certain inner product spaces
and their relation to interpolation problems of the considered type.

In Sections 2 and 5 some results on rational functions and the sets N
π
ν are

proved. Some of them are known, however, they are either used later or are
immediate consequences of our results.

There are a lot of different approaches to questions of the considered type. In
particular we refer to [2] and [3] where rational interpolation problems are studied.
There the solution (solutions, respectively) with minimal McMillan degree also
are of particular interest. Within the framework of rational interpolation not only
values of the function itself, but also values for its derivatives can be prescribed
(see e.g. [1] or [2]. Some generalizations to matrix valued interpolation problems
can be found e.g. in [4], [6], [7] or [12]. Another approach to rational interpolation



3

problems using the so called Iohvidov laws can be found e.g. in [10]. This method
is not applicable in our case. We refer to [5] for further references.

Interpolation problems of Nevanlinna-Pick type have various applications. A
whole part of the book [5] is devoted to connections with control and system
theory (see also [9]).

2 A result on rational functions

Before stating the first theorem we recall the notion of degree and signature.
Let f be a rational function. The degree of f is defined as the number deg f

of poles of f in C counted according to their multiplicities. If f(z) = p(z)
q(z)

with

relatively prime polynomials p and q the degree of f equals max(deg p, deg q),
where the degree of a polynomial is defined as usual.

Let P be a hermitian n × n-matrix. The signature sign P of P is the pair
(π, ν) where π (ν, respectively) is the number of positive (negative, respectively)
eigenvalues of P , counted according to their multiplicities. Obviously, the defect
δ of P is n − π − ν.

Further let f be a meromorphic function in C and denote by D(f) ⊆ C the
domain of holomorphy of f . Then f is called real if for each z ∈ D(f) ∩ D(f )

the relation f(z ) = f (z ) holds. If f is a rational function, say f(z) = p(z)
q(z)

(p, q relatively prime, q monic), then f is real if and only if p and q have real
coefficients.

In analogy to the Pick matrix (4) we introduce the following notation.

Definition 2 Let f be a complex valued function defined on some subset D(f)
of C+, let k ∈ IN and ζ1, . . . , ζk ∈ D(f). Denote by IPζ1,...,ζk

(f) the matrix

IPζ1,...,ζk
(f) =

(

f(ζi) − f (ζj )

ζi − ζj

)k

j,i=1

.

It follows immediately that f ∈ N
π
ν if and only if for any k ∈ IN and points

ζ1, . . . , ζk ∈ Df the Pick matrix IPζ1,...,ζk
(f) has signature (π′, ν ′) with π′ ≤ π

and ν ′ ≤ ν, and if for some k and some points ζ1, . . . , ζk ∈ Df in both relations
equality holds.

Theorem 1 Let f be a real rational function. For k ∈ IN, k ≥ deg f and distinct
points ζ1, . . . , ζk ∈ Df the signature of the Pick matrix IPζ1,...,ζk

(f) does not depend
on k and ζ1, . . . , ζk. If

sign IPζ1,...,ζk
(f) = (πf , νf),

then f ∈ N
πf
νf

.
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Proof : Let m = deg f, k ≥ m and let K ′(z, z′) for z, z′ ∈ Df be the kernel

K ′(z, z′) =
p(z)q(z ′) − p(z ′)q(z)

z − z ′
=

m−1
∑

r,s=0

arsz
rz ′

s
.

Further let ζ1, . . . ,ζk be distinct points of Df . The number of positive (negative,
respectively) eigenvalues of the Pick matrix IPζ1, . . . ,ζk

(f) equals the number of
positive (negative, respectively) squares of the hermitian form

Hζ1, . . . ,ζk
(y) =

k
∑

r,s=1

K ′(ζr, ζs)yrys

defined for y = (y1, . . . ,yk) ∈ Ck. We consider the hermitian form

H(x) =
m−1
∑

r,s=0

arsxrx s

defined for x = (x0, . . . ,xm−1) ∈ Cm, and the linear mapping Uζ1, . . . ,ζk
: Ck →

Cm represented with respect to the canonical bases by the matrix

Uζ1,...,ζk
=













1 · · · 1
ζ1 · · · ζk

...
. . .

...
ζm−1
1 · · · ζm−1

k













.

For y ∈ Ck the following relation can be checked immediately:

Hζ1,...,ζk
(y) = H(Uζ1,...,ζk

y) .

As Uζ1,...,ζk
has rank m and maps a definite subspace (of Ck considered with the

form Hζ1,...,ζk
) injectively onto a definite subspace (of Cm considered with the

form H) we find that the signature of IPζ1,...,ζk
(f) equals the signature of H .

Therefore it does not depend on k and ζ1, . . . , ζk.
If points ζ1, . . . , ζk with k < m are given, choose arbitrary points ζk+1, . . . , ζm.

Then sign IPζ1,...,ζm
(f) = (πf , νf) and therefore πf (νf , respectively) are upper

bounds for the signature numbers of IPζ1,...,ζk
(f).

Corollary 1 If k > deg f , for any points ζ1, . . . , ζk ∈ Df the Pick matrix
IPζ1,...,ζk

(f) is singular.
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Corollary 2 Any real rational function f is contained in some set N
π
ν . Here the

pair (π, ν) is the signature of IPζ1,...,ζk
(f) where k = deg f and ζ1, . . . , ζk are deg f

distinct points of Df . Further π + ν ≤ deg f holds.

In Section 5 it will follow that in the last relation the equality sign holds.

3 The unique solution

Consider now the interpolation problem (3) with data (z1, w1), . . . ,(zn, wn) ∈
C+ × C and the corresponding Pick matrix (4) .

If sign IP = (π0, ν0) and ν < ν0 or π < π0 obviously no solution of the problem
(3) exists in N

π
ν .

Let us introduce some notation (following e.g. [11]): If P = (pij) i=1,...n
j=1...m

is a

(n × m)-matrix, n′ ≤ n, m′ ≤ m and {i1, . . . ,in′} ⊆ {1, . . . ,n}, {j1, . . . ,jm′} ⊆
{1, . . . ,m} then

P

(

i1, . . . , in′

j1, . . . , jm′

)

= (piljk
) l=1,...n′

k=1...m′
.

Let Pr = P
(

1,...,r

1,...,r

)

for r ≤ n, m and define P0 = (1).

For a quadratic matrix P = (pij)
n
i,j=1 we consider the matrix P ′ = (p′ij)

n
i,j=1 of

the algebraic complements of P :

p′ij = (−1)i+j

∣

∣

∣

∣

∣

IP

(

1, . . . , i − 1, i + 1, . . . , n

1, . . . , j − 1, j + 1 . . . n

)∣

∣

∣

∣

∣

.

In the sequel P ′ will be called the reciprocal matrix of P .

Lemma 1 Consider the interpolation problem (3) with given data (z1, w1), . . . ,
(zn, wn) ∈ C+ × C and let l = rank IP + 1. The data (z1, w1), . . . ,(zn, wn) can be
ordered such that the Pick matrix IP has the following properties:

1. |IPl−1| 6= 0,

2. if |IPi| = 0 for some i with 0 < i < l − 1, then |IPi−1| · |IPi+1| 6= 0.

For real symmetric matrices this lemma is proved e.g. in [14], §98 and remains
valid in the complex hermitian case.

In the following we suppose that the data points are ordered according to
Lemma 1 . Further, let l = rank IP + 1 and define numbers λi for i = 1, . . . ,l as

λi = (−1)i+lIP

(

1, . . . , i − 1, i + 1, . . . , l

1, . . . , l − 1

)

. (5)
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We associate with the given data the rational function

fmin(z) =

l
∑

i=1
λiwi

l
∏

j=1

j 6=i

(z − zj )

l
∑

i=1
λi

l
∏

j=1

j 6=i

(z − zj )
, (6)

and the set

Zmin = {z|
l
∑

i=1

λi

l
∏

j=1

j 6=i

(z − zj ) = 0}.

Lemma 2 The function fmin is real.

Proof : We show that for each z 6∈ {z1, . . . ,zl, z1 , . . . ,zl} ∪ Zmin the relation
fmin(z ) = fmin(z ) holds. Indeed

fmin(z ) − fmin(z ) =

(

l
∑

i=1
λiwi

1
z−zi

)(

l
∑

j=1
λj

1
z−zj

)

−

(

l
∑

j=1
λjwj

1
z−zj

)(

l
∑

i=1
λi

1
z−zi

)

(

l
∑

i=1
λi

1
z−zi

)(

l
∑

j=1
λj

1
z−zj

) .

The numerator equals

l
∑

i,j=1

λiλj

wj − wi

zj − zi

(

1

z − zi
−

1

z − zj

)

=

l
∑

i=1

λi

1

z − zi

l
∑

j=1

λj

wj − wi

zj − zi
−

l
∑

j=1

λj

1

z − zj

l
∑

i=1

λi

wj − wi

zj − zi
.

Both terms on the right hand side vanish as can be seen by expanding the deter-
minant of the singular matrix IPl:

l
∑

j=1

λj

wj − wi

zj − zi
= 0 and

l
∑

i=1

λi

wj − wi

zj − zi
= 0

for i = 1, . . . ,l (j = 1, . . . ,l, respectively).

Theorem 2 Let (z1, w1), . . . ,(zn, wn) ∈ C+×C, sign IP = (π0, ν0) and rank IP =
l − 1 < n for the corresponding Pick matrix (4) . Then the problem (3) has a
solution f ∈ N

π0

ν0
if and only if one of the following three (equivalent) conditions

is satisfied:
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(i) deg fmin = l − 1.

(ii) λj 6= 0 for j = 1, . . . ,l − 1.

(iii) zj 6∈ Zmin for j = 1, . . . ,l − 1 or, written more explicitly,

l
∑

i=1

λi

zj − zi
6= 0 for j = 1, . . . ,l − 1.

In this case f = fmin which is given by (6) .

Proof : First we prove the uniqueness statement. Suppose that the function
f ∈ N

π0

ν0
satisfies (3) :

f(zi) = wi for i = 1, . . . ,n.

Arrange the data according to Lemma 1 and consider for z ∈ Df and w = f(z)
the determinant

|IPl,z| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

w1−w1

z1−z1
. . . wl−1−w1

zl−1−z1

wl−w1

zl−z1

w−w1

z−z1
...

. . .
...

...
...

w1−wl−1

z1−zl−1

. . . wl−1−wl−1

zl−1−zl−1

wl−wl−1

zl−zl−1

w−wl−1

z−zl−1

w1−wl

z1−zl
. . . wl−1−wl

zl−1−zl

wl−wl

zl−zl

w−wl

z−zl

w1−w
z1−z

. . . wl−1−w

zl−1−z

wl−w

zl−z
w−w
z−z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (7)

Applying Jacobi’s sign rule to the sequence

1 = |IP0|, |IP1|, . . . ,|IPl−1| 6= 0, |IPl| = 0, |IPl,z|

it follows that |IPl,z| has the same sign as |IPl−1|. Sylvester’s identity implies

0 ≤ |IPl,z| · |IPl−1| = −
∣

∣

∣IPl,z

(

1,...,l−1,l

1,...,l−1,l+1

)∣

∣

∣

2
=

= −

∣

∣

∣

∣

∣

l
∑

i=1
λi

w−wi

z−zi

∣

∣

∣

∣

∣

2

,
(8)

thus
l
∑

i=1
λi

w−wi

z−zi
= 0 which yields w = f(z) = fmin(z).

In the following we show that fmin satisfies the interpolation conditions (3)
if and only if (i), (ii) or (iii) is valid.

To establish the necessity of these conditions we note that (i) is an immediate
consequence of Theorem 1 , (ii) is implied by (i) in any case and (i) also implies
(iii) because fmin takes finite values at points zj for j = 1, . . . ,l − 1.
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Suppose now that (ii) is satisfied. Then for j = 1, . . . ,l−1 we have fmin(zj ) =
wj . If we assume (iii) we find

fmin(zj) =

l
∑

i=1
λi

wi−wj

zj−zi

l
∑

i=1

λi

zj−zi

+ wj = wj for j = 1, . . . ,l − 1.

Thus (i),(ii) or (iii) imply fmin(zj) = wj for j = 1, . . . ,l − 1. As λl 6= 0 we also
have fmin(zl) = wl.

Now let j ∈ {l + 1, . . . ,n} and consider the determinant (7) for f = fmin

and z = zj . Then (8) implies that |IPl,zj
| = 0 if and only if w is a solution of

the linear equation

l
∑

i=1

λi

l
∏

j=1

j 6=i

(z − zj ) · w =
l
∑

i=1

λiwi

l
∏

j=1

j 6=i

(z − zj ).

This is the case for exactly one value of w, which is then equal to fmin(zj), or for
all w or for no w. As |IPl,zj

| = 0 for w = wj the last possibility cannot occur.
The second possibility is also excluded because Theorem 1 already applies to
fmin and we find deg fmin = l − 1. The only case left is the first one and here we
have fmin(zj) = wj.

Finally we again apply Theorem 1 to obtain f ∈ N
π0

ν0
.

æ

4 Interpolation and inner product spaces

Now we associate with a complex function f defined on D(f) ⊆ C+ an inner
product space.

Definition 3 Let f : D(f) → C , D(f) ⊆ C+. Denote by Hf the following
linear space of all formal sums

Hf = {
∑

z∈D(f)

xzez | xz ∈ C, xz = 0 for all but finitely many z ∈ D(f)},

equipped with the inner product defined by the relation

[ez, ew]Hf
=

f(z) − f (w)

z − w
(z, w ∈ D(f)).



9

If no confusion can occur the index Hf at the inner product will be dropped.
Note that by definition the elements ez for z ∈ D(f) are linearly independent.

If the function f is an extension of some function g (that is D(g) ⊆ D(f) and
f |D(g) = g) then Hg can be considered in a canonical way as subspace of Hf .

Recall that for an inner product space L the isotropic subspace is the set
L

◦ = L ∩ L
⊥. If L

◦ 6= {0} the space L is called degenerated.
Consider now the interpolation problem (3) with data (z1, w1), . . . ,(zn, wn) ∈

C+ × C. Let IP be the corresponding Pick matrix, sign IP = (π0, ν0) and δ =
n − π0 − ν0.

With the given data we associate the inner product space Hf̂ for the function

f̂ defined as follows:

D(f̂) = {z1, . . . ,zn}, f̂(zi) = wi for i = 1, . . . ,n. (9)

In the following the space Hf̂ is denoted by H. The dimension of each maximal
positive (negative, respectively) subspace of H is π0 (ν0, respectively) and the
dimension of H

◦ is δ (> 0). If f is a solution of the interpolation problem (3)
we evidently have H ⊆ Hf .

With each nonzero neutral vector h◦ of H we shall associate a real rational
function fh◦ which will coincide with fmin from (6) .

Definition 4 If h◦ ∈ H
◦ \ {0}, h◦ =

n
∑

i=1
h◦

i ezi
, denote with fh◦ the rational func-

tion

fh◦(z) =

n
∑

i=1
h◦
i wi

n
∏

j=1

j 6=i

(z − zj )

n
∑

i=1
h◦
i

n
∏

j=1

j 6=i

(z − zj )
, (10)

defined on its domain of holomorphy Dfh◦ in C+.

Lemma 3 Suppose that the interpolation problem (3) has a solution f in N
π0

ν0
.

Then there are δ linearly independent vectors h◦
1, . . . ,h

◦
δ ∈ H

◦, such that f = fh◦
i

for i = 1, . . . ,δ.

Proof : The solution in N
π0

ν0
is given by formula (6) , which can be written as

fmin(z) =

n
∑

i=1
µ

(1 )
i wi

n
∏

j=1

j 6=i

(z − zj )

n
∑

i=1
µ

(1 )
i

n
∏

j=1

j 6=i

(z − zj )
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with µ
(1)
i = λi for i = 1, . . . ,l − 1, µ

(1)
l = λl 6= 0 and µ

(1)
i = 0 for i = l + 1, . . . ,n.

From the definition (5) of the numbers λi we see that (µ
(1)
1 , . . . ,µ

(1)
l−1, µ

(1)
l )T is a

column of the reciprocal matrix of IP
(

1,...,l−1,l

1,...,l−1,l

)

. Together with |IPl−1| 6= 0 and
rank IP = l − 1 this implies that

IP · (µ
(1)
1 , . . . ,µ

(1)
l−1, µ

(1)
l , 0, . . . ,0)T = 0

holds. In other words the vector h◦
1 =

n
∑

i=1
µ

(1)
i ezi

is isotropic: h◦
1 ∈ H

◦.

In the proof of Theorem 2 we have ordered the points z1, . . . ,zn according to
Lemma 1 . The conditions required in Lemma 1 concern only the properties of
the first l − 1 points. Thus the order of the remaining points is arbitrary, which
means we could make the same calculations with the point z(l−1)+r (r = 2, . . . ,δ)
instead of zl. The function fmin constructed in this way can be written as

fmin(z) =

n
∑

i=1
µ

(r)
i wi

n
∏

j=1

j 6=i

(z − zj )

n
∑

i=1
µ

(r)
i

n
∏

j=1

j 6=i

(z − zj )

where (µ
(r)
1 , . . . ,µ

(r)
l−1, µ

(r)
l−1+r)

T is again a column of the reciprocal matrix of

IP
(

1,...,l−1,l−1+r

1,...,l−1,l−1+r

)

, µ
(r)
l−1+r 6= 0 and µ

(r)
l = . . . = µ

(r)
l−1+r−1 = µ

(r)
l−1+r+1 = . . . =

µ(r)
n = 0. Again we get

IP · (µ
(r)
1 , . . . ,µ

(r)
l−1, 0, . . . ,0, µ

(r)
l−1+r, 0, . . . ,0)T = 0,

and therefore h◦
r =

n
∑

i=1
µ

(r)
i ezi

∈ H
◦.

Obviously the vectors h◦
1, . . . ,h

◦
δ are linearly independent.

Theorem 3 Suppose that the interpolation problem (3) with data (z1, w1), . . . ,
(zn, wn) ∈ C+ × C has a solution f ∈ N

π0

ν0
where (π0, ν0) is the signature of the

Pick matrix IP, n > π0 +ν0. Then for arbitrary h◦ ∈ H
◦, h◦ 6= 0 we have f = fh◦.

Proof : Lemma 3 implies that the set L (⊆ H
◦) of all h◦ with f(z) = fh◦(z)

contains δ = n − π0 − ν0 = dimH
◦ linearly independent vectors. The theorem

will be proved if we show that L (together with 0) is a subspace.
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If α ∈ C, α 6= 0 and h◦ ∈ L then fαh◦(z) = fh◦(z). If h◦
1, h

◦
2 ∈ L, h◦

1 6= −h◦
2

consider the representation (10) of fh◦
1

and fh◦
2
:

fh◦
1
(z) =

p1(z)

q1(z)
and fh◦

2
(z) =

p2(z)

q2(z)
.

Observe that the polynomials p1, q1 and p2, q2 need not be relatively prime. As
h◦

1 6= −h◦
2 the polynomial q1+q2 is not identically zero. Outside a circle containing

all zeros of q1, q2 and q1 + q2 we find from h◦
1, h

◦
2 ∈ L that p1(z) = f(z)q1(z) and

p2(z) = f(z)q2(z). Thus
p1(z) + p2(z)

q1(z) + q2(z)
= f(z)

holds which shows that h◦
1 + h◦

2 ∈ L.

In the following we use the geometry of the inner product spaces H and Hf

to show that there are no solutions of the problem (3) in the sets N
π for

π0 < π < π + δ and Nν for ν0 < ν < ν + δ where again δ is the defect of IP.

Lemma 4 Let f be a complex valued continuous function defined on D(f) ⊆ C+

such that Hf is degenerated and let h◦ ∈ Hf
◦ \ {0}, say h◦ =

m
∑

i=1
h◦

i eζi
∈ Hf

◦.

Finally suppose that no point z ∈ D(f) with
m
∑

i=1
h◦
i

m
∏

j=1

j 6=i

(z − ζi) = 0 lies isolated in

D(f). Then for z ∈ D(f)

f(z) =

m
∑

i=1
h◦
i f (zi)

m
∏

j=1

j 6=i

(z − zi)

m
∑

i=1
h◦
i

m
∏

j=1

j 6=i

(z − zi)
. (11)

That is, f is the restriction of the rational function on the right hand side of (11)
to D(f).

Proof : For z ∈ D(f) we find

0 = [ez, h
◦] =

m
∑

i=1

h◦
i

f(z) − f (ζi)

z − ζi

.

This gives
m
∑

i=1

h◦
i (f(z) − f (ζi))

m
∏

j=1

j 6=i

(z − ζi) = 0
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which yields (11) , at least if
m
∑

i=1
h◦
i

m
∏

j=1

j 6=i

(z − ζj ) 6= 0.

The following lemma is proved by a straightforward calculation.

Lemma 5 Let h◦ ∈ H
◦ \ {0}, h◦ =

n
∑

i=1
h◦

i ezi
and define u(z) as

u(z) =
1

n
∑

i=1
h◦

i

n
∏

j=1

j 6=i

(z − zj)

n
∑

i=1





h◦

i

n
∏

j=1

j 6=i

(z − zj)ezi





 .

Then for z, w ∈ Dfh◦ the relation

[ez, ew] =
fh◦(z) − fh◦(w)

z − w
= [u(w), u(z)]H (12)

holds.

Using this lemma we prove

Lemma 6 Let h◦ ∈ H
◦ \ {0}, h◦ =

n
∑

i=1
h◦

i ezi
. Then fh◦ ∈ N

π
ν for some numbers π

and ν with π ≤ π0 and ν ≤ ν0.

Proof : Let m ∈ IN, ζ1, . . . ,ζm ∈ Dfh◦ with

n
∑

i=1

h◦

i

n
∏

j=1

j 6=i

(z − zj) 6= 0 for z = ζ1, . . . ,ζm. (13)

Consider the space Cm provided with the inner product

[ei, ej ]Cm =
f(ζj) − f (ζi)

ζj − ζi

for i, j = 1, . . . ,m,

where ei denotes the i-th canonical basis vector of Cm. Then Lemma 5 im-
plies that the operator U defined by the relations U ei = u(ζi) is an isometry
from 〈Cm, [., .]Cm〉 into H. Thus π0 (ν0, respectively) is an upper bound for the
dimension of positive (negative, respectively) subspaces of 〈Cm, [., .]Cm〉.

Because the set of points z ∈ Dfh◦ satisfying (13) lies dense in Dfh◦ the
assertion follows.
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Remark 1 Note that Lemma 4 cannot always be applied to the function f̂
defined as in (9) because D(f̂) is discrete. So we need not necessarily have

fh◦(zi) = wi for i = 1, . . . ,n. But if no point zi is a zero of z 7→
n
∑

i=1
h◦
i

n
∏

j=1

j 6=i

(z − zj ),

we find that fh◦ extends f̂ which means that fh◦(zi) = wi for all i = 1, . . . ,n.
Then the above lemma shows that fh◦ is a solution in N

π0

ν0
of the interpolation

problem (3) . Thus we can add to the conditions (i), (ii) and (iii) of Theorem
2 the following also equivalent condition.

(iv) There exists a vector h◦ ∈ H
◦ \ {0}, h◦ =

n
∑

i=1
h◦

i ezi
, such that no point zi

(i = 1, . . . ,n) is a zero of z 7→
n
∑

i=1
h◦
i

n
∏

j=1

j 6=i

(z − zi).

Using some results about the geometry of inner product spaces (which can be
found e.g. in [8] or [13]) we obtain the following theorem.

Theorem 4 Consider the interpolation problem (3) with data (z1, w1), . . . ,
(zn, wn) ∈ C+ × C. If δ denotes the defect of the Pick matrix IP and sign IP =
(π0, ν0) there is no solution f in any set N

π or Nν with π0 < π < π0 + δ or
ν0 < ν < ν0 + δ.

Proof : Let f be a solution of the problem (3) with f ∈ Nν and ν0 < ν <
ν0 + δ. Then we have H ⊆ Hf . Consider the nondegenerated inner product space
L = Hf/Hf

◦. The largest dimension of a negative subspace of L equals ν.
In case H∩Hf

◦ = {0} we can consider H in a natural way as a subspace of L. If
H

− denotes some ν0-dimensional negative subspace of H, we can decompose L as
L = H

−[+̇](H−)⊥. Obviously H
◦ ⊆ (H−)⊥ and the largest dimension of a negative

subspace of (H−)⊥ equals ν − ν0. Then the dimension of neutral subspaces of
(H−)⊥ is also bounded by ν − ν0, which is impossible as dimH

◦ = δ > ν − ν0.
Thus we have H ∩ Hf

◦ 6= {0}. For any vector h◦ ∈ H ∩ Hf
◦, h◦ 6= 0 Lemma

4 implies f = fh◦ .
Lemma 6 yields fh◦ ∈ Nν′ with ν ′ ≤ ν0. This is a contradiction to ν > ν0

which proves the assertion.
The remaining part of the theorem is proved analogously.

Remark 2 If a solution of (3) in N
π0

ν0
exists it is not necessary to use Lemma

6 in the proof of Theorem 4 . Because in this case Theorem 3 already implies
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fh◦ ∈ N
π0

ν0
.

5 Real rational functions

Using some ideas of the previous sections we will now complete the results of
Section 2.

To start with, let f be any real rational function of degree k. Then for n = k+1
and any points z1, . . . ,zn ∈ Df the Pick matrix IPz1,...,zn

has signature (πf , νf) and
is singular. Furthermore, f ∈ N

πf
νf

. Thus we can consider f as the unique solution

in the set N
πf
νf

of the interpolation problem with data (z1, f(z1)), . . . , (zn, f(zn)).
Consider the inner product space H assigned to this interpolation problem.

By reversing the argument of Lemma 4 we get:

Lemma 7 Let f be a real rational function. Then we have H
◦ ⊆ Hf

◦.

Proof : Let h◦ ∈ H
◦, h◦ 6= 0. By Theorem 3 we have f(z) = fh◦(z). An easy

computation yields [ez , h
◦] = 0 for each z ∈ Df , that is h◦ ∈ Hf

◦.

Theorem 5 Let f be a real meromorphic function in C and consider f restricted
to the domain Df . Then Hf degenerates if and only if f is a real rational function.
In this case dimHf/Hf

◦ = deg f (< ∞).

Proof : The first assertion follows from Lemma 4 together with Lemma 7 . To
prove the second part of the theorem let l = dimHf/Hf

◦ and k = deg f . If we
consider f as the unique solution of the above constructed interpolation problem
we find k = rank IP. Thus we find a k-dimensional nondegenerated subspace of
Hf which implies l ≥ k.

Assume that l > k. Linearly independent vectors of Hf/Hf
◦ yield linearly

independent vectors in Hf . The subspace they generate in Hf is nondegenerated.
So we can find points ζ1, . . . ,ζm ∈ Df , such that rank IPm ≥ l > k. But this is
impossible as deg f = k.

Because rank IP = πf +νf the above theorem shows that the inequality πf +νf ≤
deg f given in Corollary 2 is in fact an equality. This immediately implies the
following corollary.
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Corollary 3 Let Rk for k ∈ IN0 be the set of real rational functions of degree k.
Then we have

Rk =
⋃

π+ν=k

N
π
ν for k ∈ IN.

Clearly the above union is a disjoint union.

Remark 3 Due to Corollary 3 a rational function f is an element of N
π
ν for

some π and ν with π+ν = deg f . It is well known (see e.g. [15]) how the numbers
π and ν are determined by f .

æ
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