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On the existence of congruence-uniform structures on
universal algebras

1 Introduction

In many algebraic structures like groups, rings or lattices there is made use of topologies
which are naturally given by the algebraic structure. As an example may serve a m-adic
topology on a ring (see e.g. [5]) or subgroup topologies on (abelian) groups (see e.g.
[10] or [13]).

In a similar way a universal algebra may be equipped with a topological structure.
A fact in common with both examples mentioned above is that not only a topology but
a uniform structure is given, and that this uniformity is determined by a fundamental
system of entourages consisting of congruence relations (ideals or normal subgroups,
respectively). Thus the following definition, which can be found in [2] or [6] gives a
generalization of the situation above:

Definition 1 Let A =< A,F > be a universal algebra of type F with underlying set
A. A uniform structure Non A is called a congruence-uniform structure (cus) if there
exists a fundamental system of entourages consisting of congruence relations.

As a matter of fact all fundamental operations of A are uniformly continuous with
respect to a cus. This is even more true as each family of n-ary polynomial functions
(n ∈ IN) forms an equicontinuous family of uniformly continuous mappings.

A question which arises naturally is whether or not for a given universal algebra
there exists a cus. Obviously the set {∆} consisting of the equality relation only and
the set {∇} where ∇ denotes the complete relation both form a filterbase on A2. Thus
at least the discrete and indiscrete uniform structures on A are cus. To exclude such
cases we will restrict our attention to proper cus (pcus), which are cus such that the
induced topology is Hausdorff and not discrete.

In [8] the rings which do not allow any pcus are determined. In the present article
the existence of pcus will be related to the atomic structure of the lattice ConA of all
congruences of A . This leads to a characterization of those universal algebras which
allow a pcus.

In §2 the connection mentioned above is established and a characterization is given
for the case of congruence distributive universal algebras. §3 deals with the general
case. In §4 we study the existence of pcus on a universal algebra which is isomorphic
to some direct product. In paragraphs §5 and §6 we apply the general results to
multioperatorgroups and lattices, giving characterizations for the existence of pcus in
either case.

The notation used in this article is similar to [4] and [7] concerning algebraic notions
and [1] for used topological notions. The last two paragraphs make use of some theorems
that can be found in [7] and [14].
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2 General results

To start with note the following quite obvious fact.

Lemma 1 Let A be a universal algebra . There exists a pcus on A if and only if there
exists a set M ⊆ ConA of congruence relations with the following properties:

1. M is a filterbase

2. ∆ /∈M

3.
⋂

θ∈M θ = ∆

We now give a necessary condition for the existence of a pcus, which will be used in
proving our first main theorem. This result partly generalizes Theorem 1 of [8].

Proposition 1 Let A be a universal algebra . If there exists a mapping κ : ConA →
ConA with the properties

1. |{θ ∈ ConA |κ(θ) 6= ∆}| <∞

2. ∀θ ∈ ConA : height[∆, κ(θ)] <∞

3. ∀(a, b) /∈ ∆ : θ(a, b) ∩ [
⋃

θ∈ConA κ(θ)] 6= ∆

then there does not exist any pcus on A .

Proof: Let ∅ 6= Σ ⊆ ConA be a filterbase, then without limitation of generality we
may assume

∀ψ1, ψ2 ∈ Σ : ψ1 ∧ ψ2 ∈ Σ (1)

∆ /∈ Σ (2)

We will then prove
∧

θ∈Σ θ 6= ∆.
For this purpose let θ ∈ ConA and consider the set Ωθ = {κ(θ)∧ψ|ψ ∈ Σ} which
is partially ordered by inclusion.

Step 1 : Ωθ has a smallest element.
First note that Ωθ has minimal elements because Ωθ is not empty and starting
with an arbitrary element of Ωθ we construct a descending chain in Ωθ. Any
such chain can only have finite lenght not exceeding height[∆, κ(θ)] + 1 because of
Ωθ ⊆ [∆, κ(θ)] and assumption 2. Thus we may construct a minimal element in
at most height[∆, κ(θ)] + 1 steps. Because Ωθ obviously is closed with respect to
finite intersection, there can be at most one minimal element which is therefore
the smallest element.

Denote in the following by ψ(θ) an element of Σ such that κ(θ) ∧ ψ(θ) is the
smallest element of Ωθ. According to assumption 1 there is n ∈ IN such that we
may denote by {θ1, . . . , θn} the set of all congruences θ with κ(θ) 6= ∆.
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Let ψ = ψ(θ1)∧ . . .∧ψ(θn), then ψ ∈ Σ and ψ∧κ(θi) ⊆ ψ(θi)∧κ(θi) for i = 1, . . . n
and therefore ψ ∧ κ(θi) is the smallest element of Ω(θi) for each i.

Step 2 : There is a number i ∈ {1, . . . , n} such that ψ ∧ κ(θi) 6= ∆.
Suppose ∀i ∈ {1, . . . , n} : ψ ∧ κ(θi) = ∆. Then ∆ = ψ ∩ (

⋃n
i=1 κ(θi)) = ψ ∩

(
⋃

θ∈ConA κ(θ)). As ψ ∈ Σ we have ψ 6= ∆. Choose any pair (a, b) ∈ ψ \∆ then
θ(a, b) ∩ (

⋃

θ∈ConA κ(θ)) = ∆. This contradicts assumption 3.
Let e.g. ψ ∧ κ(θ1) 6= ∆. Then ∀φ ∈ Σ : ψ ∧ κ(θ1) ⊆ φ ∧ κ(θ1) ⊆ φ which implies
the fact we aimed for.

Now we are in position to prove our first main theorem, which relates the existence of
pcus to the atomic structure of ConA . Following the notation of [7] we call a lattice
atomic if every element lies above an atom. Note that this condition is weaker than
the requirement that every element is the join of atoms.

Theorem 1 Let A be a universal algebra . Then the following implications hold:

1. If ConA is not atomic then there exists a pcus.

2. If ConA is atomic and has only finitely many atoms then there exists no pcus.

Proof: ad 1 : Let θ be a congruence which does not contain an atom and denote by Ω
the set of all descending chains in ConA which start with θ and do not contain ∆.
Ω is partially ordered by inclusion and is not empty since the one-element chain
{θ} is element of Ω. If there is an ascending chain (αi)i∈I of elements of Ω then the
set-theoretic union

⋃

i∈I αi is also a chain which starts with θ and does not contain
∆. Thus

⋃

i∈I αi is an upper bound for each αi in Ω. According to Zorn’s Lemma
there is a maximal element of Ω which we will denote by αM . Obviously αM
satisfies the properties (1) and (2) and therefore defines a cus. Let ψ =

∧

φ∈αM
φ

then ψ = ∆. For if ψ 6= ∆, there would be a congruence ψ1 6= ∆, ψ1 ⊂ ψ because
ψ cannot be an atom. Thus the chain αM ∨{ψ1} would properly contain αM which
contradicts the choice of αM . The cus given by the chain αM therefore is proper.

ad 2 : Let κ : ConA → ConA be the mapping defined by

κ(θ) =

{

∆ , θ is not an atom
θ , θ is an atom

Then the following statements are true:

1. |{θ ∈ ConA |κ(θ) 6= ∆}| <∞ because there are only finitely many atoms.

2. height[∆, κ(θ)] = 1, 0 whether or not θ is an atom.

3. For each pair (a, b) /∈ ∆ the set θ(a, b) ∩ [
⋃

ψ∈ConA κ(ψ)] is not equal to ∆
because there is an atom which is contained in θ(a, b).

Applying Proposition 1 we obtain our result.
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According to the above theorem only the case of ConA being atomic and having in-
finitely many atoms requires further attention.

If ConA is distributive, there always exists pcus in this case. There is however not
only one pcus, but a rich structure of pcus. To make this idea more precise we give the
following definition:

Definition 2 A family of (N ij)i,j∈IN of pcus is called a fan family if

1. ∀i ∈ IN, j1 < j2 ∈ IN : N ij2 is finer than N ij1

2. ∀i1 6= i2, j1, j2 ∈ IN : N i1j1 and N i2j2 are incomparable.

Call two fan families (N ij) and (N ′ij) elementwise incomparable if any two elements
N ij and N kl are incomparable.

If I is an index set then denote with λ(I) the cardinality of the set of all limit
numbers of I where I is wellordered such that it has a maximal element.

Note that if I is infinite we have λ(I) = |I|.
A sufficient condition for the existence of pcus is given by the following result, which

leads to our characterization theorem for congruence distributive universal algebras.

Proposition 2 Let (θi)i∈I be an infinite family of distinct atoms of the atomic lattice
ConA with the property

∀J ⊆ I, θ atom of ConA : θ ⊆
∨

j∈J

θj ⇐⇒ θ = θi for some i ∈ J (3)

then there exists at least |I| elementwise incomparable fan families of pcus on A .

Proof: Step 1 : Let N = {ik|k ∈ IN} be a subset of I which is order isomorphic to
IN. Then the family Θn =

∨

k≥n θik for n ∈ IN is a descending chain in ConA .
Obviously no congruence Θn is equal to ∆. We now show that the cus given by
this chain is proper: Suppose

⋂

n∈IN Θn 6= ∆. Then there would be an atom
θ which is contained in this intersection and thus in each congruence Θn. Now
θ ⊆ Θ1 =

∨

k≥1 θik implies θ = θik for some number k. But then θ = θik ⊆ Θik+1

leads to a contradiction.
Given a set N as above we may consider the sets N l

p = {ik ∈ N |k = p2l·h, h ∈ IN}
for any prime number p. The pcus N pl constructed as above from these sets form
a fan family of pcus. This is an immediate consequence of the criterion for the
comparability of two pcus constructed in the above way shown in the next step of
the proof.

Step 2 : Let N1 = {ik|k ∈ IN} and N2 = {jk|k ∈ IN} be two subsets of I; we
obtain two pcus N 1 and N 2, respectively by step 1. Then N 1 is finer than N 2 if
and only if there exists a number n0 ∈ IN such that {ik ∈ N1|k ≥ n0} ⊆ N2.
To prove this let first {ik ∈ N1|k ≥ n0} ⊆ N2 and let Θ2

n be a set of the filterbase
obtained in step 1 for N 2. Obviously there is a number m ≥ n0 such that im ∈ N2

and im ≥ jn. Then Θ1
m =

∨

k≥m θik ⊆
∨

l≥n θjl = Θ2
n and thus N 1 is finer than

N 2.
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For the converse suppose that N 1 is finer than N 2. Then there is a number m
such that Θ1

m ⊆ Θ2
1. Now for k ≥ m : θik ⊆ Θ1

m ⊆ Θ2
1 =

∨

l≥1 θjl⇒ θik = θj for
some j ∈ N2. Thus {ik|k ≥ m} ⊆ N2.

Step 3 : Let i0 be a limit number in the wellorderd set I and let j1 be any element
smaller than i0. Then by defining elements jn = jn−1+1 inductively for n ∈ IN we
obtain a set {jn|n ∈ IN} which is order isomorphic to IN. Now we write this set as
a disjoint union of countably many countable sets, which all are order isomorphic
to IN. From each of these countable sets we obtain a fan family of pcus as shown in
step 1. Refering again to step 2 these fan families are elementwise incomparable.
Thus there are at least ℵ0 · λ(I) = ℵ0 · |I| = |I| incomparable fan families.

Now we get as an immediate consequence the following theorem.

Theorem 2 Let A be a universal algebra with distributive lattice of congruences. Then
there exists a pcus on A if and only if either A is not atomic or A has infinitely many
atoms. If the set At(A ) of all atoms of A is infinite then there exists at least |At(A )|
elementwise incomparable fan families of pcus.

Proof: In view of Theorem 1 and Proposition 2 it remains to show that condition (3)
holds in a congruence distributive universal algebra when {θi|i ∈ I} is the set of all
atoms of ConA . To show this let θ be an atom of ConA and let θ ⊆

∨

j∈J θj for
J ⊆ I. This is true if and only if θ = θ ∧ (

∨

j∈J θj) = θ ∧ (
⋃

E⊆J,|E|<∞

∨

j∈E θj) =
⋃

E⊆J,|E|<∞(θ ∧
∨

j∈E θj) =
⋃

E⊆J,|E|<∞

∨

j∈E(θ ∧ θj) Because θ and θj are atoms
either θ ∧ θj = ∆ if θ 6= θj or θ ∧ θj = θ if θ = θj. Thus the above equation is true
if and only if θ = θj for some j ∈ J , which shows (3).

3 Congruence atomic universal algebras

We will now discuss in greater detail the remaining case where ConA is atomic and has
infinitely many atoms, without making further assumptions on A . For the rest of this
paragraph let all universal algebras have these properties and denote by (ψi)i∈IA the
family of all atoms of ConA (where IA is infinite). Also denote by α : ConA → P(IA)
the mapping defined by

α(φ) = {i ∈ IA|ψi ⊆ φ}

Lemma 2 Some basic properties of the mapping α are

1. α is monotonic, i.e. φ1 ⊆ φ2⇒α(φ1) ⊆ α(φ2)

2. α(φ1 ∧ φ2) ⊆ α(φ1) ∩ α(φ2) and α(φ1 ∨ φ2) ⊇ α(φ1) ∪ α(φ2)

3. The cus induced by a filterbase Σ of congruence relations is proper if and only if
⋂

φ∈Σ α(φ) = ∅
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Proof:

1. i ∈ α(φ1)⇒ψi ⊆ φ1 ⊆ φ2⇒ i ∈ α(φ2)

2. This assertion is an immediate consequence of the fact α being monotonic.

3. Assume the topology induced by Σ is not proper. Then
⋂

φ∈Σ φ 6= ∆⇒∃i0 ∈
IA : ψi0 ⊆

⋂

φ∈Σ φ⇒∀φ ∈ Σ : i0 ∈ α(φ)⇒ i0 ∈
⋂

φ∈Σ α(φ).

For the converse suppose i0 ∈
⋂

φ∈Σ φ. Then by the same conclusions as
above one obtains that Σ cannot be proper.

In group theory one defines a normal subgroup which is called the socle of the group.
In a similar manner we give the following definition.

Definition 3 Let A be a universal algebra . We will call the set

σ(A ) = {
∨

i∈J

ψi|J ⊆ IA}

the socle of A .

Concerning the question of the existence of a pcus we may restrict our attention to
σ(A ).

Proposition 3 There exists a pcus on A if and only if there exists a pcus which has
a filterbase of neighbourhoods consisting of sets of the form

∨

i∈J ψi where J ⊆ IA.

Proof: Let Σ be the base of a pcus. Then we obtain a base of a pcus of the required
form by

Σ′ = {
∨

i∈α(φ)

ψi|φ ∈ Σ}

Because of A being atomic ∆ /∈ Σ′ holds. Also
⋂

θ∈Σ′ θ ⊆
⋂

φ∈Σ φ = ∆ which
means Σ′ being proper. The property of Σ′ being a filterbase immediately follows
from Lemma 2.
The converse is obvious.

For our next theorem we need another notation.

Definition 4 The mapping ¯ : P(IA) → P(IA) which is defined as J = {i ∈ IA|ψi ⊆
∨

j∈J ψj} will be called the atomic closure operator on IA.

Note that ¯ can be obtained as the closure operator corresponding to a certain relation:
Let R ⊆ IA × ConA be the relation defined by

iR θ ⇐⇒ ψi ≤ θ.
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The so called polarities1 of R compute as (J ⊆ IA)

J→ = {θ ∈ ConA |jRθ ∀j ∈ J} = [
∨

j∈J

ψj ,∇]

and
(J→)← = {i ∈ IA|iRθ ∀θ ∈ J

→} = {i ∈ IA|ψi ⊆
∨

j∈J

ψj} = J̄ .

Some properties of ¯ are collected in the following Lemma.

Lemma 3 Let J, J1, J2 be subsets of IA, then

1. ∅ = ∅ and J ⊆ J

2. J1 ⊆ J2⇒J1 ⊆ J2

3. (J1 ∩ J2) ⊆ J1 ∩ J2 and (J1 ∪ J2) ⊇ J1 ∪ J2

4. J = J

5. α(φ) = α(φ)

Proof: The statements 1, 2 and 4 are elementary properties of a closure operator (see
Theorem 2.21 of [11]). Furthermore 3 follows immediately from 2. To prove 5 we
only have to note that

i ∈ α(φ)⇒ψi ⊆
∨

j∈α(φ)

ψj ⊆ φ⇒ i ∈ α(φ)

holds.

Unfortunately J1 ∪ J2 ⊆ J1 ∪ J2 fails to be true in general and so we cannot talk about
¯ as a closure operator in the sense of general topology. Nevertheless we will call a set
J ⊆ IA with J = J a -̄closed set.

Theorem 3 Let A be a universal algebra with atomic lattice of congruences. Then
A allows a pcus if and only if there exists a filterbase (Ji)i∈I of non-empty -̄closed sets
on IA with

⋂

i∈I

Ji = ∅ (4)

Proof: If Σ is base for a pcus then by using the mapping α one obtains a family of
subsets {α(φ)|φ ∈ Σ} of IA. The properties we require were proved in the above
Lemmas 2 and 3.

1see [11] p.51.
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If a filterbase {Ji|i ∈ I} of -̄closed subsets of IA with property (4) is given, then
one verifies easily (again referring to the Lemmas 2 and 3) that the system

Σ = {
∨

j∈Ji

ψj |i ∈ I}

is a filterbase with ∆ /∈ Σ and
⋂

φ∈Σ φ = ∆. Thus Σ determines a pcus on A .

Note the formal similarity of condition (4) with the condition of compactness for a
topological space given by a closure operator .̄

We will now formulate the above theorem in terms of the lattice

L =< {J ⊆ IA|J = J},⊆>

Proposition 4 2 The operator ¯ is an algebraic closure operator and thus the lattice
L is algebraic.

Proof: Using Lemma 3 we get
⋂

i∈I Ji ⊆
⋂

i∈I Ji =
⋂

i∈I Ji for each family (Ji)i∈I
of -̄closed sets. Let now (Ji)i∈I be an ascending chain of -̄closed sets and let
l ∈

⋃

i∈I Ji. We have to show that l ∈
⋃

i∈I Ji. Now ψl ⊆
∨

j∈
⋃

i∈I
Ji
ψj =

⋃

E⊆
⋃

i∈I
Ji

(
∨

j∈E ψj). ψl being an atom implies ∃E0 : ψl ⊆
∨

j∈E0
ψj ⊆

∨

j∈Ji
ψj

for some Ji. Because Ji is closed we obtain l ∈ Ji ⊆
⋃

i∈I Ji. Thus ¯ is actually
algebraic. Theorem 2.16 of [11] now implies that L is an algebraic lattice.

Let L̃ denote the dual lattice of L. Then the above Theorem 3 is formulated in terms
of the lattice L̃ as follows:

Theorem 4 There exists no pcus on the universal algebra A if and only if the 1-
element of the lattice L̃ is compact.

Proof: The 1-element of L̃ being compact means that if 1 =
∨

i∈I Li for some family
of elements Li of L̃ there is a finite subset I ′ of I such that 1 =

∨

i∈I′ Li. Returning
to the lattice L we get our condition being equivalent to the following: If the empty
set is infimum of an arbitrary family of elements of L then it is already infimum
of a finite subfamily. Thus 1 being not compact in L̃ is equivalent to the existence
of a filterbase of elements of L with property (4).

Combining our previous Theorems 1 and 4 we obtain our characterization result for a
universal algebra without making further assumptions.

Theorem 5 Let A be a universal algebra . There exists a pcus on A if and only if
either ConA is not atomic or ConA is atomic but the 1-element in the lattice L̃ is not
compact.

2For the notions used in this Proposition see e.g. [4] or [9].
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4 Direct products

Let the universal algebra A be isomorphic to a direct product
∏

i∈IAi of a family of
universal algebras (Ai )i∈I . Then we relate the property of the existence of pcuson A to
the same property for the direct factors.

Because of the next proposition we may focus our attention to the case of finite
direct products.

Proposition 5 3 Let A =
∏

i∈IAi where I is infinite. There exists then at least |I|
elementwise incomparable fan families of pcus.

Proof: Let {ik|k ∈ IN} ⊆ I be a subset of I which is order isomorphic to IN. For a
subset J of I let

χJ =
∏

i∈Iδi(J) where δi(J) =

{

∆ , i /∈ J
∇ , i ∈ J

For n ∈ IN let Θn = χ{ik |k≥n,k∈IN} then the family (Θn)n∈IN is a descending chain
of congruences of A which does not contain ∆. But

⋂

n∈IN Θn = ∆. To show this
let (a, b) = ((ai)i∈I , (bi)i∈I) be an element of

⋂

n∈IN Θn. If i ∈ I \ {ik|k ∈ IN}
then ai obviously equal bi. If i = il ∈ {ik|k ∈ IN} then (a, b) ∈ Θl+1 also leads to
ai = bi. Thus a = b.
Proceeding as in the proof of Proposition 2 we obtain the assertion of this propo-
sition.

So we have to consider the case |I| <∞. But first let us introduce one more notation.

Definition 5 Let A be a universal algebra . Then denote by CuA the set of all cus on
A . If for two filterbases Σ,Σ′ ⊆ ConA the relation ∼ is defined by

Σ ∼ Σ′ ⇐⇒ the induced cus coincide

then there is a bijective correspondence between CuA and the set

{Σ|Σ ⊆ ConA is a filterbase}/∼

Proposition 6 Let A =
∏

i∈IAi be the direct product of the family (Ai )i∈I . Then
there is a mapping

β :
∏

i∈ICuAi −→ CuA (5)

which is one-to-one.

Proof: For a family (Σi)i∈I of filterbases in ConAi define β((Σi)i∈I) = {
∏

i∈Iφi}
where φi is equal to ∇ for all but finitely many i ∈ I and for any other I let
φi ∈ Σi. Then β((Σi)i∈I) is a subset of ConA and obviously is a filterbase. Thus
it induces a cus on A . We have to show that β is well defined i.e. that two families

3We may remind of the notation given in Definition 2.
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(Σi)i∈I and (Σ′i)i∈I where for each i ∈ I the same cus is induced by Σi and
Σ′i have the same image under β. Then we may regard β as a mapping
β :

∏

i∈ICuAi → CuA . But this fact is immediate because β((Σi)i∈I) induces
the product uniformity of the uniformities induced by each Σi. With the same
conclusion it also follows that β is one-to-one.

Corrollary 1 If A =
∏

i∈IAi and one universal algebra Ai allows a pcus then
A allows a pcus.

To characterize the existence of a pcus on A in terms of pcus on direct factors we have to
make further assumptions and will use the notion of [3]. So let us recall some notation:

Definition 6 Let A =
∏

i∈IAi be the direct product of a family (Ai )i∈I . A con-
gruence θ ∈ ConA is said to have property (P) if there exists a family (θi)i∈I of
congruences θi ∈ ConAi such that θ =

∏

i∈Iθi.
The direct product

∏

i∈IAi is said to have property (P) if each congruence of
A satisfies (P). Similar a class K of universal algebra (especially an equational class)
is said to hold (P) if each direct product of members of K holds (P).

Proposition 7 Let the direct product A =
∏

i∈IAi have property (P). Then the map-
ping β is onto.

Proof: First of all note that if A holds (P) the index set I must be finite 4(see
Theorem 6 of [3]). Therefore β is given by β((Σi)i∈I) = {

∏

i∈Iφi|φi ∈ Σi}.
Suppose now Σ is a filterbase in ConA which induces a cus on A . Then for each
member φ ∈ Σ there exists congruences φi ∈ ConAi such that φ =

∏

i∈Iφi, namely
φi = πi(φ) where πi denotes the projection mapping onto the i-th component.
The sets Σi = {φi|φi = πi(φ), φ ∈ Σ} are filterbases in ConAi (which is proved
straightforward). Thus we may consider for this family β((Σi)i∈I). This unifor-
mity is finer than the uniformity we started with. But all projection mappings
5πi : (A ,Σ)→ (Ai ,Σi) are uniformly continous and therefore the uniformity in-
duced by Σ must be finer than the product uniformity of the family (Σi)i∈I which
coincides with β((Σi)i∈I). Thus β((Σi)i∈I) equals the uniformity induced by Σ
and β is onto.

In [3] one can find conditions when (P) holds. Necessary for (P) is that the index
set I is finite - which is the case we are interested in. Combining the above results we
obtain a characterization whether or not A allows a pcus.

Theorem 6 Let A =
∏

i∈IAi be a direct product of the family (Ai )i∈I . If the set I
is infinite then A allows a pcus. The condition that one Ai allows a pcusis sufficient
for A to allow a pcus. If A satisfies (P) this condition is also necessary.

4We exclude the case of some direct factors being one-element algebras which does not make any
difference for our purposes.

5(A , Σ) denotes the uniform space on A with Σ as a fundamental system of entourages.
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5 Multioperatorgroups

Our first application of the theorems given in the previous paragraphs will essentially
concern multioperatorgroups. We are considering a little more extensive class of uni-
versal algebras given by the following definition.

Definition 7 A universal algebra A =< A,F > is said to admit a multioperator-
group structure if there is a multioperatorgroup G(A ) with underlying set A which is
polynomially equivalent with A .

For the rest of this paragraph denote by σ(G(A )) the socle 6 of the multioperatorgroup
G(A ). As a result of [14] 7 the socle of a multioperatorgroup is a direct product of a
family of minimal normal subgroups.

To prepare the main theorem of this paragraph where we will make further as-
sumptions on A we give a proposition which makes use of Theorem 1 and holds in
general.

Proposition 8 Let G be a multioperatorgroup. Then the following implications hold
(e denotes the identity element of G):

1. If there exists a normal subgroup N �G of G with N ∩σ(G) = {e} then G allows
a pcus.

2. If σ(G) =
∏

i∈I Ni where Ni are minimal normal subgroups of G and I is infinite
then there are at least |I| elementwise incomparable fan families of pcus.

Proof: To prove the first statement note that under the assumptions of 1 ConG is
not atomic. Thus Theorem 1 implies the existence of a pcus.
Using the same method as in the proof of Proposition 5 we obtain the required
number of filterbases consisting of normal subgroups of σ(G). Because every au-
tomorphism of G operates componentwise on σ(G) and because of the special
structure of the filterbases constructed in Proposition 5 we get that the elements
of the above filterbases are even normal subgroups of the group G. Thus we have
the required number of pcus on G.

Now we state our theorem which characterizes the existence of pcus on some special
classes of multioperatorgroups. An example for a variety for which this theorem is
applicable is the variety of commutative rings with unity.

Theorem 7 Let A be a universal algebra which admits a multioperatorgroup structure.
If A is in a variety satisfying the conditions of Fraser and Horn 8 then 1 and 2 are
equivalent:

1. A allows a pcus.

6see [14] p. 272f.
7Theorem 27 on p. 272.
8see [3] Theorem 5.
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2. Either there exists a normal subgroup N � G(A ) with N ∩ σ(G(A )) = {e} or
σ(G(A )) =

∏

i∈INi where I is infinite.

Proof: The implication ‘2⇒ 1’ is stated in the above proposition, so assume 2 does
not hold. Then we show that ConG(A ) is atomic and has only finitely many
atoms. This implies by using ConA ∼= ConG(A ) and Theorem 1 that 1 is false.
Step 1 : Let θ ∈ ConA be represented by the normal subgroup N . Then N ∩
σ(G(A )) 6= {e}. Because G(A ) is polynomially equivalent with A it also satisfies
the conditions of Fraser and Horn. Writing σ(G(A )) =

∏

i∈INi (I is of course
finite by our assumption) we may write N =

∏

i∈IN
′
i where N ′i is a normal subset

of Ni. Again using the argument that every automorphism of G(A ) operates
componentwise on σ(G(A )) =

∏

i∈INi we get that the subgroups N ′i are even
normal subgroups of G(A ). Because of N ∩ σ(G(A )) 6= {e} we get that at least
one normal subgroup N ′i must equal Ni which implies Ni ⊆ N . The congruence
induced by Ni is an atom contained in θ.
Step 2 : Now let N be the normal subgroup induced by an atom of ConG(A ).
The previous step tells us that there exists a normal subgroup Ni contained in N .
Thus N = Ni for some i ∈ I. Because I is finite ConG(A ) can have only finitely
many atoms.

6 Lattices

To start with note that the lattice of congruences of a lattice V is always distributiv.
Thus we may apply Theorem 2. But ConV has some more special properties e.g. ConV
is pseudo boolean 9. We may recapitulate in this place the definition of a pseudo
boolean lattice.

Definition 8 Let V be a lattice; a, b, c ∈ V. Then c is called a pseudo complement of
a with respect to b if

∀x ∈ V : x � c ⇐⇒ x ∧ a � b

It is easy to see that at most one pseudo complement may exist.
If V is a lattice with zero-element and if for each pair of elements a, b the pseudo

complement exists, V is called a pseudo boolean lattice. In such a lattice we will denote
the pseudo complement c of a pair of elements a, b by c = a←֓b.

Let again be {ψi|i ∈ IA} be the set of all atoms of the lattice ConV and appropriate
to Definition 3 let σ(V) = {

∨

i∈J ψi|J ⊆ IA}. The socle σ(V) has a greatest element as
subset of ConV namely

∨

i∈IA ψi =
∨

ψ∈σ(V) ψ.
Now we come to our characterization theorem on the existence of pcus in lattices.

9See Theorem 31.8 of [7].
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Theorem 8 Let V be a lattice. V does not allow a proper cus if and only if the following
two conditions are satisfied.

((
∨

i∈IA

ψi) ←֓ ∆) = ∆ (6)

|σ(V)| <∞ (7)

Proof: Step 1 : Obviously ConV has only finitely many atoms if and only if |σ(V)| <
∞.
Step 2 : We show that the validity of (6) is equivalent to ConV being atomic.
First let ConV be atomic and assume ((

∨

i∈IA
ψi) ←֓ ∆) 6= ∆. Then we find an

atom φ ⊆ ((
∨

i∈IA
ψi) ←֓ ∆). But this implies φ = φ ∧

∨

i∈IA
ψi ⊆ ∆ which is a

contradiction.
For the converse let φ be any congruence of V, φ 6= ∆. Then φ ∧

∨

i∈IA
ψi 6= ∆ as

φ ∧
∨

i∈IA
ψi = ∆ would imply φ ⊆ ((

∨

i∈IA
ψi) ←֓ ∆) which is a contradiction as

by our assumption the right hand side equals ∆. Thus we have (see [7] Theorem
25.4) ∆ 6= φ ∧

∨

i∈IA
ψi =

∨

i∈IA
(φ ∧ ψi) which is only possible if there is an atom

ψ0 with ψ0 ⊆ φ. So we found that ConV is atomic.
Applying Theorem 2 we obtain our assertion.

Now we want to proceed with a proposition which is of purely algebraic nature and
characterizes the existence of pcus in a subclass of lattices. To prove it we make use of
theorems on congruence lattices of lattices which can be found in [7]. Again we may
recapitulate some notation.

Definition 9 10 A lattice V is called relatively complemented if for each pair of ele-
ments a � b and x ∈ [a, b] there exists a relative complement which is an element y
such that x ∨ y = b and x ∧ y = a.

Proposition 9 Let V be a lattice satisfying the following two properties:

1. For two elements a � b one may find a finite maximal chain from a to b.

2. V is modular or V is relatively complemented.

Then there exists a pcus on V if and only if |ConV| ≥ ℵ0.

Proof: Our conditions imply that ConV is a boolean algebra (see Theorem 31.9 of
[7]). Because ConV is also a complete lattice we have that ConV is atomic if and
only if it is isomorphic to a boolean algebra P(M) where M is some set. Such an
algebra has only finitely many atoms if and only if it is finite. This establishes our
assertion.

Finally we want to relate to a given lattice V a quasicompact T0- space and characterize
the existence of pcus on V in terms of this topological object.

10See [7] p. 48f.
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Definition 10 In the sequel we will call a boolean algebra T with an additional oper-
ation ¯ a topological boolean algebra if ¯ is a closure operator in the sense of general
topology, i.e. satisfies the axioms

1. x ⊆ y⇒x ⊆ y

2. x ⊆ x, x = x

3. x ∪ y = x ∪ y, 0 = 0

An element x ∈ T is called open if x′ = x′. The set of all open elements of T will be
denoted by Ṫ.

Note that a topological boolean algebra in our sense need not be a topoligical boolean
algebra in the sense that all fundamental operations are continous.

Proposition 10 Let V be a lattice. We may assign to V a quasicompact T0- space
which is constructed by the following procedure:

1. The lattice ConV is a pseudo boolean lattice, thus isomorphic to Ṫ where T is a
topological boolean algebra.

2. T is as a boolean algebra isomorphic to the set of clopen sets of some compact
totally disconnected topological space < Y, τ ′ >.

3. On Y we define another topology τ ′′ which has as basis all clopen sets of < Y, τ ′ >
that correspond to open elements of the boolean algebra T via the isomorphism of
step 2.

4. Now we factorize the space < Y, τ ′′ > with respect to the relation 11

x, y ∈ Y : x ∼ y ⇐⇒ U(x) = U(y)

We obtain the associated T0-space < X, τ > which is quasicompact. The cannonical
mapping π :< Y, τ ′′ >→< X, τ > is continuous, open and closed.

Proof: The first step taken is exactly the statement of Theorem 25.7 of [7]. Using
the theorem of Stone we obtain the representation of T as asserted in step 2. For
step 3 we have to show that the set

B = {O ⊆ Y |O is clopen, O′ = O′}

is a basis for some topology which is a straightforward conclusion of the axioms
for .̄ The last step is the well known construction of the associated T0-space (see
e.g. [12] p. 120f). It remains to show that < X, τ > is quasicompact. This follows
from the fact that < Y, τ ′′ > is coarser than < Y, τ ′ > and that < X, τ > is a
continuous and open image of < Y, τ ′′ >.

Some properties of this assignment we need are given by the following lemmata.

11Denote by U(x) the system of all neighbourhoods of the point x.
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Lemma 4 A congruence of V is an atom in the lattice ConV if and only if it corre-
sponds to an open subset O of Y with the property

∀x ∈ O :
⋂

U∈U(x)

U = O (8)

When constructing the associated T0-space such open sets exactly are the inverse images
of the isolated points of < X, τ >.

Proof: Assume θ is an atom in ConV. Then the corresponding set O is an open set in
< Y, τ ′′ >. Thus for x ∈ O we have

⋂

U∈U(x) U ⊆ O. Suppose there exist x, y ∈ O
with y /∈

⋂

U∈U(x) U . Then there would be an open set U0 ∈ U(x) with y /∈ U0.
But then for the corresponding congruences ∆, φ, θ of ∅, U0 ∩O,O we would have
∆ ⊂ φ ⊂ θ which contradicts θ being an atom.
Now assume property (8). If there is a congruence φ with ∆ 6= φ ⊆ θ where θ
is the congruence corresponding to O we have for the corresponding set O′ of φ
∅ 6= O′ ⊆ O. So for any x ∈ O′ we have O′ ⊇

⋂

U∈U(x)U = O. Thus O′ = O which
implies φ = θ. Therefore θ is an atom in ConV .
If O is an open set satisfying (8) we obviously get |π(O)| = 1 and thus π(O) is an
isolated point. Conversely let x̃ be an isolated point of < X, τ >. Then π−1(x̃) is
open which gives

∀x ∈ π−1(x̃) : π−1(x̃) ⊇
⋂

U∈U(x)

U

As for all x ∈ π−1(x̃) the neighbourhood filters coincide, we have π−1(x̃) ⊆
⋂

U∈U(X) U which establishes (8).

Lemma 5 The lattice ConV is atomic if and only if the set

Iso (< X, τ >) = {x ∈ X|x is isolated point}

is dense in < X, τ >.

Proof: First let ConV be atomic and let Õ be a non-empty open set in< X, τ >. Then
O = π−1(Õ) is open in < Y, τ ′′ > and therefore there must be a set ∅ 6= O′ ⊆ O of
the base of the topology τ ′′. This set corresponds to a congruence relation θ 6= ∆.
Thus there is an atom in ConV which is contained in θ. The corresponding isolated
point of X then is contained in Õ. Reversing this process we obtain the converse.

Now we are ready to formulate our criterion for the existence of a pcus in terms of the
- via Proposition 10 - corresponding topological space < X, τ >.

Theorem 9 The lattice V does not allow a pcus if and only if we find a finite dense
subset consisting of isolated points of the corresponding space < X, τ >.
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Proof: Using the fact that every dense subset of a topological space must contain the
set Iso this is an immediate consequence of the above lemmata and Theorem 2.
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