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PERMUTABLE POLYNOMIALS AND

RELATED TOPICS

H.Woracek G.Eigenthaler

1 Introduction

Let k be a field and k[x] the polynomial ring over k in one indeterminate. Consider the
semigroup 〈k[x], ◦〉 where ◦ denotes the composition of polynomials defined as (f ◦ g)(x) =
f(g(x)). The semigroup 〈k[x], ◦〉 is not commutative, i.e. the equality f ◦ g = g ◦ f does not
hold in general. Thus the question arises which specific polynomials f and g permute, i.e.
satisfy f ◦ g = g ◦ f , and, in a more structural setting, which subsemigroups of 〈k[x], ◦〉 are
commutative.

We consider mainly the case that k = C, the field of complex numbers, as in this case a
result of J.Ritt (see [38]) answers the first mentioned question. This leads us to an answer to
the second question in form of a complete list of commutative subsemigroups of 〈k[x], ◦〉 for
k = C (see Theorem 2).

In §2 we recall some basic facts concerning the semigroup 〈k[x], ◦〉. We introduce the notion
of the gap-degree of a polynomial in §3. The gap-degree is an invariant under conjugation and
provides a convenient tool for working with permutable polynomials. In §4 we give a classifica-
tion of commutative subsemigroups of 〈C[x], ◦〉 which contain no linear polynomials. Together
with some well known results this leads us to a complete list of commutative subsemigroups of
〈C[x], ◦〉 (see List IV in §5). Finally, in §6 we apply our results to some related questions, namely
the classification of maximal commutative subsemigroups and the classification of generalized
permutable chains.

We would like to point out that, as we refer to certain results of J.Ritt, in most parts of the
paper k equals C. Apart from this some methods developed in this note depend only on the
fact that k is of characteristic zero and algebraically closed; in particular, this is the case for
§3.

As a complete proof of the presented results employing only purely algebraic methods is still
missing we have tried to collect literature concerning the subject of permutable polynomials
and related topics, including various results in the case that char k 6= 0 and some papers which
give connections to other areas.

2 Some basic facts about the semigroup 〈k[x], ◦〉

For f ∈ k[x] denote by [f ] the (exact) degree of f . It is well known that [.] : 〈k[x], ◦〉 → 〈N0, ·〉 is
a homomorphism (as k denotes a field, k contains no zero divisors). The polynomial x is neutral
with respect to composition and, again due to the fact that k is a field, the units of 〈k[x], ◦〉
are exactly the linear polynomials. Furthermore the inverse of the polynomial L(x) = ax + b

is easily seen to be 1
a
x − b

a
; we will denote the inverse of L by L(−1). The n-th iterate of a

polynomial f will be abbreviated as f (n), i.e.

f (n) = f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

.
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The operation of composition is right-distributive with respect to addition and multiplica-
tion of polynomials, i.e.

(f + g) ◦ h = (f ◦ h) + (g ◦ h) and

(f · g) ◦ h = (f ◦ h) · (g ◦ h)

holds. From this and the fact that [.] is a homomorphism it follows easily that every nonconstant
polynomial is right-regular. On the other hand not every nonconstant polynomial is left-regular.

Given any invertible polynomial L(x) = ax + b, we can define an (inner) automorphism ΦL

of 〈k[x], ◦〉 as ΦL(f) = L(−1) ◦ f ◦ L for f ∈ k[x]. Clearly the relations ΦL ◦ ΦM = ΦM◦L and
(ΦL)−1 = ΦL(−1) are satisfied. Thus the set of all inner automorphisms forms a group acting on
k[x], antiisomorphic to the group of linear polynomials.

We call two polynomials f and g conjugates of each other, if they belong to the same domain
of transitivity with respect to this group, i.e. if there exists a linear polynomial L, such that
ΦL(f) = g holds. At some stage it is convenient to consider a coarser equivalence relation: We
call two polynomials f and g weakly conjugates of each other, if there exist linear polyninomials
L1 and L2, such that L1 ◦ f ◦ L2 = g holds.

A polynomial f permutes with a constant polynomial a if and only if a is a fixed point of f :
f(a) = a. Thus any commutative subsemigroup of 〈k[x], ◦〉 contains at most one constant. On
the other hand, given any commutative subsemigroup S we can extend S to a - still commutative
- semigroup S ′ = S∪{a} if and only if a is a common fixed point of all polynomials of S. In view
of this fact we can confine our attention to commutative semigroups which contain no constant
polynomials. In the sequel the notion of commutative semigroup will always be understood in
this manner.

A straightforward argument using Zorn’s Lemma shows that every commutative subsemi-
group of 〈k[x], ◦〉 is contained in some maximal commutative subsemigroup.

If f permutes with g, then obviously f permutes also with every power g(n) of g. The
converse statement is not true, as the following example shows: Let f(x) = ζx where ζ is a
primitive third root of unity and let g(x) = x2. Then

(x2)(2) ◦ ζx = x4 ◦ ζx = ζx ◦ x4 = ζx ◦ (x2)(2),

but
x2 ◦ ζx = ζ2x ◦ x2 6= ζx ◦ x2.

But at least the following result, which will be used in the subsequent sections, holds.

Lemma 1 Let f permute with g(ni) for ni ∈ N, i = 1, . . . , k and let d = gcd(n1, . . . , nk). Then
f permutes with g(d).

Proof : For [g] = 0 the statement is trivial, so let [g] > 0 and suppose w.l.o.g. d = λ1n1 + . . .+
λlnl − λl+1nl+1 − . . . − λknk with λi ≥ 0. As f permutes with each g(ni) we find

f ◦ g(λ1n1+...+λlnl) = g(λ1n1+...+λlnl) ◦ f

and
f ◦ g(λl+1nl+1+...+λknk) = g(λl+1nl+1+...+λknk) ◦ f.

Thus
f ◦ g(d) ◦ g(λl+1nl+1+...+λknk) = f ◦ g(λ1n1+...+λlnl) = g(λ1n1+...+λlnl) ◦ f =
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= g(d) ◦ g(λl+1nl+1+...+λknk) ◦ f = g(d) ◦ f ◦ g(λl+1nl+1+...+λknk),

which implies g(d) ◦ f = f ◦ g(d).

3 The gap-degree of a polynomial

In this section we study an invariant of a polynomial under conjugation. The results proved in
the sequel provide some tools for the study of permutable polynomials and give an insight to
the behaviour of linear polynomials when composed with another (arbitrary) polynomial.

Definition 1 Let f ∈ k[x], [f ] ≥ 1. Consider the field extension [k(x) : k] and the subring
k[f ]. Denote by G(f) the group of all automorphisms of [k(x) : k] which leave k[f ] (as a whole)
invariant. The number L(f) = |G(f)| will be called the gap-degree of f .

A well known theorem (see e.g. [43]) states that the automorphisms of [k(x) : k] are exactly
those endomorphisms which map x to some linear fractional element L(x) = ax+b

cx+d
of k(x).

Denote by αL the automorphism of [k(x) : k] with αL : x 7→ L(x), i.e. αL(f) = f ◦ L.

Lemma 2 The group G(f) consists exactly of those automorphisms αL, where L is a linear
polynomial and satisfies an equation of the form

L1 ◦ f = f ◦ L (1)

for some linear polynomial L1.

Proof : The condition αL(k[f ]) ⊆ k[f ] implies that αL(f) = f ◦ L ∈ k[f ]. Thus f ◦ L is
a polynomial (in the indeterminate x), which implies that L is a polynomial. Furthermore
f ◦ L = L1 ◦ f where L1 is a polynomial, which then must have degree 1.

Conversely suppose that (1) holds for some linear polynomial L1. Then αL(k[f ]) = k[f ], as
for arbitrary g ◦ f ∈ k[f ] the formulas

αL(g ◦ f) = g ◦ (f ◦ L) = (g ◦ L1) ◦ f

and
αL(L−1

1 ◦ f) = L−1
1 ◦ f ◦ L = L−1

1 ◦ L1 ◦ f = f

hold.

We have αL◦M = αM ◦ αL, hence L 7→ αL(−1) defines a group-isomorphism. In view of this fact
and the above lemma we can consider G(f) in the following as a group of linear polynomials.

Before we proceed to determine the group G(f) for a given polynomial f , we introduce
another notion.

Definition 2 Let f ∈ k[x], f(x) = anx
n + an−1x

n−1 + . . . + a0 with n = [f ] ≥ 2. Denote by
l(f) the smallest number k ≥ 1, such that an−k 6= 0. In the case f(x) = anx

n let l(f) = n. If
l(f) > 1, i.e. an−1 = 0, we say that f has gap-form. We call the number l(f) the gap of f .
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From now on let us assume that char k = 0.

Lemma 3 Let f ∈ k[x], f(x) = anxn + an−1x
n−1 + . . .+ a0 with [f ] ≥ 2, let L(x) = ax+ b and

consider the polynomial g = f ◦ L. Then l(g) > 1 if and only if

b = −
an−1

nan

. (2)

Proof : We compute the highest coefficients of g:

g(x) = f ◦ L(x) = an(ax + b)n + an−1(ax + b)n−1 + . . . =

= ana
nxn + (annan−1b + an−1a

n−1)xn−1 + . . . .

Thus g has gap-form if and only if

annan−1b + an−1a
n−1 = 0,

which is equivalent to (2), as a 6= 0.

Corollary 1 Let f ∈ k[x], f(x) = anxn + an−1x
n−1 + . . . + a0 with [f ] ≥ 2. Then there is a

conjugate g of f which has gap-form.

Proof : As multiplication from the left with linear polynomials does not change l(f), we can
take

g = (x +
an−1

nan

) ◦ f ◦ (x −
an−1

nan

).

From now on assume that k is not only of characteristic zero, but also algebraically closed.
The following proposition gives a method to compute L(f) from the coefficients of f .

Proposition 1 Let f ∈ k[x], f(x) = anxn + an−1x
n−1 + . . . + a0, n = [f ] ≥ 2 and suppose that

f has gap-form.

(i) In case that 1 < l(f) < n denote by n = k1 > k2 > . . . > kl > 0 those indices ki ∈
{1, . . . , n} for which aki

6= 0. Then the formula

L(f) = gcd(k1 − k2, k2 − k3, . . . , kl−1 − kl)

holds. Furthermore the gap-degree L(f) is the maximum number r, such that f(x) − a0

admits a representation of the form

f(x) − a0 = xkp(xr), for k ≥ 1 and p ∈ k[x], p(0) 6= 0, (3)

and we have G(f) = {ζx|ζL(f) = 1} ∼= ZL(f).

(ii) In case that l(f) = n, i.e. that f(x) = anxn +a0, we have L(f) = |k| and G(f) = {ax|a ∈
k, a 6= 0}.
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Case (ii) occurs if and only if f is weakly conjugated to the power xn.

Proof : Consider the case 1 < l(f) < n. Denote by c the maximum of all numbers r such that
a representation (3) is possible, and let d = gcd(k1 − k2, k2 − k3, . . . , kl−1 − kl). In first place
we show c = d.

Let r be any number such that (3) holds for some k ∈ N and p ∈ k[x]. Then

{k1, . . . , kl} ⊆ {k, k + r, k + 2r, . . . , k + [p]r}

holds, which implies r|(ki − ki+1) for each i = 1, . . . , l − 1 and therefore r|d.
To show the converse relation we establish a representation (3) for r = d:

f(x) − a0 = xkl(ak1x
k1−kl + ak2x

k2−kl + . . . + akl
).

As d|(ki − ki+1) for each i, d also divides ki − kl. Thus f(x) − a0 = xkp(xd) with k = kl and

p(x) = ak1x
k1−kl

d + ak2x
k2−kl

d + . . . + akl
.

We proceed to determine G(f). Let ζ be a d-th root of unity, then

f ◦ ζx = (f − a0) ◦ ζx + a0 = xkp(xd) ◦ ζx + a0 = ζkx ◦ xkp(xd) + a0 =

= ζkx ◦ (f − a0) + a0 = ζkx ◦ f + (1 − ζk)a0 = L1 ◦ f,

where L1(x) = ζkx+(1− ζk)a0. Thus ζx ∈ G(f) by Lemma 2. Let conversely L(x) = ax+ b be
an element of G(f). Then there exists, again by Lemma 2, a linear polynomial L′(x) = a′x+ b′,
such that L′ ◦ f = f ◦ L. Thus l(f ◦ L) = l(L′ ◦ f) = l(f) > 1, which implies b = 0 by Lemma
3. Let p(x) = bmxm + bm−1x

m−1 + . . . + b0, then

f ◦ L = (xkp(xd) + a0) ◦ (ax) = akxkp(adxd) + a0 =

ak(bmadmxdm+k + bm−1a
d(m−1)xd(m−1)+k + . . . + b0x

k) + a0

and
L′ ◦ f = a′(bmxdm+k + bm−1x

d(m−1)+k + . . . + b0x
k) + b′.

Comparing coefficients we find
a′ = adm+k and b′ = a0.

Let bi (i 6= m) be any nonzero coefficient of p and compare the coefficients of xdi+k:

bia
di+k = adm+kbi,

that is ad(m−i) = 1. The numbers k1, . . . , kl are exactly those numbers di + k with bi 6= 0 and
k1 = dm+k. Thus d = gcd(k1 −k2, k1−k3, . . . , k1 −kl) = gcd({d(m− i)|bi 6= 0}) and therefore
ad = 1. We found G(f) = {ζx|ζd = 1} and thus L(f) = |G(f)| = d.

Consider now the case l(f) = n. Similar to the first case we find for each L(x) = ax + b ∈
G(f) that l(f ◦ L) = l(L′ ◦ f) = l(f) > 1, hence b = 0. On the other hand

f ◦ ax = (anxn + a0) ◦ ax = (anx + (1 − an)a0) ◦ f

holds, and therefore ax ∈ G(f) for arbitrary a ∈ k, a 6= 0. Thus G(f) = {ax|a ∈ k, a 6= 0}.
If f(x) = anx

n + a0, we find f = (anx + a0) ◦ xn. Thus f is weakly conjugated to xn.
Conversely, let f be weakly conjugated to xn, i.e. f = (a′x + b′) ◦ xn ◦ (ax + b). As f has
gap-form Lemma 3 implies b = 0 and we find f(x) = a′anxn + b′.



6

Proposition 2 The gap-degree is constant on weak conjugacy classes. Let f ∈ k[x], f(x) =
anx

n + an−1x
n−1 + . . . + a0, n = [f ] ≥ 2 and let f ′ = ΦL(f) with L(x) = x − an−1

nan
. Then

L(f) = L(f ′) and the latter can be computed via Proposition 1.

(i) In case that 1 < l(f ′) < n the group G(f) is given by

G(f) = {ζx + (ζ − 1)
an−1

nan

|ζL(f) = 1} ∼= ZL(f).

(ii) In case that l(f ′) = n we have

G(f) = {ax + (a − 1)
an−1

nan

|a ∈ k, a 6= 0}.

Again case (ii) occurs if and only if f is weakly conjugated to the power xn.

Proof : Since k[f ] = k[L ◦ f ] for any linear polynomial L, we have G(f) = G(L ◦ f). Suppose

g = L1◦f ◦L2, then G(g) = G(L
(−1)
2 ◦L

(−1)
1 ◦g) = G(L

(−1)
2 ◦f ◦L2). In the following we establish

an isomorphism between G(f) and G(L
(−1)
2 ◦ f ◦ L2). This will prove the first assertion.

Let L be a linear polynomial and consider the conjugation ΦL. If H ∈ G(f) we have

H1 ◦ f = f ◦ H for some H1,

and therefore also
ΦL(H1) ◦ ΦL(f) = ΦL(f) ◦ ΦL(H).

Thus ΦL(H) ∈ G(ΦL(f)), i.e.
ΦL(G(f)) ⊆ G(ΦL(f)).

Since a similar argument shows

ΦL(−1)(G(ΦL(f))) ⊆ G(f),

we have G(ΦL(f)) ⊆ ΦL(G(f)), thus the conjugation ΦL yields an isomorphism between G(f)
and G(ΦL(f)).

In case that 1 < l(f ′) < n Proposition 1 yields G(f ′) = {ζx|ζL(f ′) = 1} and therefore

G(f) = ΦL(−1)(G(f ′)) = {ζx + (ζ − 1)
an−1

nan

|ζL(f) = 1}.

In the case l(f ′) = n the result follows by a similar argument.

For future reference we state a result of H.Engstrøm (see [16]), and give some formulas involving
gap and gap-degree.

Proposition 3 (H.Engstrøm 1941) Let f, g ∈ k[x]. If k[f ] ∩ k[g] 6= k then there exists a
polynomial h of degree [h] = gcd([f ], [g]), such that

f = f1 ◦ h and g = g1 ◦ h

holds for appropriate f1 and g1.
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Let us remark that Proposition 3 also follows from a result in [28] (ch.6, Theorem 5.84) by
using the well known fact that k[f ] = k(f) ∩ k[x] for any f ∈ k[x].

Lemma 4 Let f, g ∈ k[x], n = [f ], m = [g] ≥ 2, f(x) = anxn + an−1x
n−1 + . . . + a0, g(x) =

bmxm + bm−1x
m−1 + . . . + b0 and suppose f(x) 6= anx

n and g(x) 6= bmxm. Then the gap of the
polynomial f ◦ g is given by the following formulas:

(i) If l(g) 6= [g]l(f) then l(f ◦ g) = l(g),

(ii) if l(g) = [g]l(f) then l(f ◦ g) ≥ l(g).

In the last case equality holds if and only if

annbl(f)−1
m bm−l(g) + an−l(f) 6= 0. (4)

The gap of the polynomial f · g is given by the formulas:

(iii) If l(f) 6= l(g) then l(f · g) = min(l(f), l(g)),

(iv) If l(f) = l(g) then l(f · g) ≥ l(f) = l(g).

In the last case equality holds if and only if

anbm−l(g) + an−l(f)bm 6= 0. (5)

Furthermore we have:

(v) l(anxn ◦ g) = l(g),

(vi) l(f ◦ bmxm) = ml(f),

(vii) l(anxn · g) = l(g),

(viii) l(g(r)) = l(g) for r ∈ N.

Proof : Let k = l(f) and l = l(g), then f(x) = anx
n + an−kx

n−k + . . . + a0 and g(x) =
bmxm + bm−lx

m−l + . . . + b0 where an−k, bm−l 6= 0.
We compute the highest coefficients of f ◦ g:

f ◦ g(x) = an(bmxm + bm−lx
m−l + . . . + b0)

n+

+an−k(bmxm + bm−lx
m−l + . . . + b0)

n−k + . . . =

= anbn
mxnm + annbn−1

m bm−lx
nm−l + an−kb

n−k
m xnm−mk + . . . . (6)

From (6) the assertions (i), (ii) and (4) follow.
We compute the highest coefficients of f · g:

f · g(x) = (anxn + an−kx
n−k + . . . + a0) · (bmxm + bm−lx

m−l + . . . + b0) =

= anbmxn+m + an−kbmxn+m−k + anbm−lx
n+m−l + . . . . (7)

From (7) we obtain (iii), (iv) and (5).
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To prove (v) we compute

anxn ◦ g = an(bmxm + bm−lx
m−l + . . . + b0)

n =

= an(bn
mxnm + nbn−1

m bm−lx
nm−l + . . .).

The relations (vi) and (vii) are obvious. To establish (viii) we use induction on r. For r = 1
(viii) is clearly true. Let r ≥ 2 and suppose that l(g(r−1)) = l(g). As [g] ≥ 2

l(g) < [g]l(g) = [g]l(g(r−1))

holds. Thus (i) applies to g(r) = g(r−1) ◦ g and we obtain l(g(r)) = l(g).

Lemma 5 Let f, g ∈ k[x] be as in Lemma 4 and assume furthermore that f ◦ g = g ◦ f , then
l(f) = l(g).

Proof : By (i) and (ii) of Lemma 4 we obtain

l(f ◦ g) = l(g ◦ f) ≥ l(f).

In case l(g) 6= [g]l(f) we have l(f ◦ g) = l(g) and therefore l(g) ≥ l(f). If l(g) = [g]l(f) we
also have l(g) ≥ l(f). By symmetry l(f) ≥ l(g) and thus l(f) = l(g).

Before we can state the next result we have to introduce another notation. Denote by G∗(f)
the group of all linear polynomials L1, such that a relation of the form

L1 ◦ f = f ◦ L

for some linear polynomial L holds.

Lemma 6 Let f ∈ k[x], [f ] ≥ 2. Then

G(f) ⊇ G(f (2)) ⊇ G(f (3)) ⊇ . . . . (8)

We have G(f) = G(f (2)) if and only if G∗(f) ⊆ G(f). In this case equality holds throughout the
chain (8).

The condition G∗(f) ⊆ G(f) is satisfied for instance if 1 < l(f) < [f ] and f(0) = 0.

Proof : Let L ∈ G(f (n)) and let m < n. Then

f (n−m) ◦ (f (m) ◦ L) = (L1 ◦ f (n−m)) ◦ f (m),

and Proposition 3 implies that there exists a polynomial h of degree [h] = [f (m)], such that

f (m) ◦ L = L2 ◦ h and f (m) = L3 ◦ h

holds. Thus f (m) ◦ L = (L2 ◦ L
(−1)
3 ) ◦ f (m), i.e. L ∈ G(f (m)).
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Suppose G(f) = G(f (2)) and let L1 ∈ G∗(f). Then L1◦f = f◦L for some L ∈ G(f) = G(f (2)).
Let L2 ◦ f (2) = f (2) ◦ L, then

L2 ◦ f (2) = f ◦ f ◦ L = f ◦ L1 ◦ f.

Thus L2 ◦ f = f ◦ L1, which shows L1 ∈ G(f). Conversly suppose that G∗(f) ⊆ G(f) and let
L ∈ G(f). Then

f (2) ◦ L = f ◦ L1 ◦ f = L2 ◦ f (2)

holds since L1 ∈ G∗(f) ⊆ G(f), and therefore L ∈ G(f (2)). Repeating the above argument
(m − 1) times we obtain

f (m) ◦ L = Lm ◦ f (m)

which shows L ∈ G(f (m)).
Let f satisfy 1 < l(f) < [f ] and f(0) = 0. Then we have a representation

f(x) = xkp(xr) with k ≥ 1 and r = L(f),

and
G(f) = {ζx|ζr = 1}.

As f ◦ ζx = ζkx ◦ f we find
G∗(f) = {ζkx|ζr = 1} ⊆ G(f).

Another sufficient condition in order that G∗(f) ⊆ G(f) holds is given in the next lemma.

Lemma 7 Let f ∈ k[x], [f ] ≥ 2. Suppose that 1 < l(f) and that for some n ∈ N and a linear
polynomial ǫx the relation

f (n) ◦ ǫx = δx ◦ f (n), where δ 6= 1 (9)

holds, then f(0) = 0. If furthermore l(f) < [f ], then G∗(f) ⊆ G(f) and in particular L(f (k)) =
L(f) for k ∈ N.

Proof : The relation (9) shows that ǫx ∈ G(f (n)). Thus, by Lemma 6 we also have ǫx ∈
G(f (n−1)), i.e.

f (n−1) ◦ ǫx = L ◦ f (n−1)

holds for some linear polynomial L. We compute

f ◦ L ◦ f (n−1) = f ◦ f (n−1) ◦ ǫx = f (n) ◦ ǫx = δx ◦ f (n),

and therefore
f ◦ L = δx ◦ f. (10)

As l(f) > 1 the right hand side of (10) has gap-form and, according to Lemma 3, the polynomial
L must be a multiplication L(x) = γx. Due to this fact we may compute

f(0) = (f ◦ γx)(0) = (δx ◦ f)(0) = δf(0).

As δ 6= 1 we find f(0) = 0 which implies together with Lemma 6 the assertion.

In the following definition we consider another group of linear polynomials. This concept has
been studied in [13].
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Definition 3 Let f ∈ k[x], [f ] ≥ 2. Denote by Gp(f) the group of all linear polynomials L

which permute with f :
L ◦ f = f ◦ L.

Furthermore let Lp(f) = |Gp(f)|.

Some results on Gp(f) will be recalled in §5.
For future reference let us state the following rather obvious facts.

Lemma 8 Let f ∈ k[x], [f ] ≥ 2. Then Gp(f) ⊆ Gp(f (n)) holds for each n ∈ N. In case L(f)
is finite we also have Lp(f (n))|L(f).

Proof : The first assertion is obvious. To prove the remaining part of the lemma, note that

Gp(f (n)) ⊆ G(f (n)) ⊆ G(f).

æ

4 Commutative semigroups which do not contain a lin-

ear polynomial

In this section we give a complete list of all commutative subsemigroups of 〈C[x], ◦〉 which
contain no linear polynomials (except possibly the trivial one, namely x).

To start with let us recall two well known results. Here k again is a field of characteristic
zero.

Proposition 4 Let k be algebraically closed and let S be a commutative subsemigroup of
〈k[x], ◦〉. If S contains an element which is conjugated to a power axn (a ∈ k, a 6= 0, n ≥ 2),
then

ΦL(S) ⊆ Pr = {ζxk|k ≡ 1 mod r, ζr = 1}

for some r and an appropriate conjugation ΦL.

Proposition 5 Let S be a commutative subsemigroup of 〈k[x], ◦〉. If S contains an element
which is conjugated to a Chebyshev polynomial tn or −tn, respectively (n ≥ 2), then either (i)
or (ii) holds for some conjugation ΦL:

(i) ΦL(S) ⊆ D1 = {tn|n ∈ N},

(ii) ΦL(S) ⊆ D2 = {±tk|k odd}.

A proof of these results can be found e.g. in [14]. Another interesting proof of Proposition 5 is
given in [3]. All these proofs employ only purely algebraic methods.

We proceed treating the remaining case of a commutative subsemigroup S of 〈C[x], ◦〉 with
no element conjugated to a power axn or a Chebyshev polynomial ±tn. To do so we use two
results of J.Ritt (see [36] and [38]) which have been proved using topological and analytic
methods.
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Proposition 6 (J.Ritt 1923) Let f, g ∈ C[x], [f ], [g] ≥ 2 be permutable and suppose that
neither f nor g is conjugated to a power or a Chebyshev polynomial. Then there exists a
conjugation ΦL and a polynomial h(x) = xp(xr), such that

ΦL(f) = ǫ1h
(m) and ΦL(g) = ǫ2h

(n).

Here ǫr
1 = ǫr

2 = 1 if r is chosen maximal. If furthermore r > 1, we have r = Lp(h).

Proposition 7 (J.Ritt 1920) Let f, g ∈ C[x], [f ], [g] ≥ 2 and let ǫ and δ be roots of unity
with

f ◦ ǫx = ǫlx ◦ f and g ◦ δx = δl′x ◦ g

for some l, l′ ∈ N. If ǫf (m) = δg(n) for some numbers m, n ∈ N, then there exists a conjugation
ΦL and a polynomial h(x) = xkp(xr) (k ≥ 0, p(0) 6= 0), such that

ΦL(f) = ǫ1h
(s) and ΦL(g) = ǫ2h

(t).

Here ǫr
1 = ǫr

2 = 1 if r is chosen maximal. If furthermore k ≥ 1 and r > 1, we have r = L(h).

Proposition 7 actually is proved in [36] only in the case ǫ = δ = 1, but it is easy to see that the
proof given there also works in the more general situation.

Before we proceed to generalize Proposition 6 we have to state a corollary of Proposition 6
and a lemma.

Corollary 2 The formulation ”there exists a conjugation ΦL and a polynomial h(x)” in Propo-
sition 6 and Proposition 7 can be strengthened to ”for each conjugation ΦL which conjugates f

(and thus g) to gap-form there exists a polynomial h(x)”.

Proof : If we have ǫ1 = ǫ2 = 1 we can apply any conjugation ΦM to the representations given
in Proposition 6 and Proposition 7, respectively and obtain a representation of the same type.
If ǫ1 6= 1 or ǫ2 6= 1 the polynomial h has gap-form. Any conjugation ΦM which conjugates f

(and thus g) to gap-form therefore differs only by a conjugation Φγx from ΦL. Applying Φγx to
the representations of Proposition 6 and Proposition 7, respectively does not change the type
of representation given.

Lemma 9 Let f1, f2, . . . be a (possibly finite) sequence of permutable polynomials which admit
the representation

fi(x) = ǫi[x
kp(xr)](ki)

where ǫr
i = 1, i.e. fi ◦ ǫix = ǫli

i x ◦ fi for convenient numbers li. Then (i) or (ii) holds:

(i) fi = h(ki) for some polynomial h.

(ii) For some i we have ǫk
i 6= 1. In this case we have in particular k ≥ 1 and r > 1.
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Proof : Assume that (ii) does not hold, i.e. ǫk
i = 1 for all i. Then

xkp(xr) ◦ ǫix = xkp(xr)

and thus also
xkp(xr) ◦ ǫ−1

i x = xkp(xr).

This implies
fi(x) = [ǫix ◦ xkp(xr) ◦ ǫ−1

i x](ki) for i = 1, 2, . . . .

As the polynomials fi permute we have that all numbers ǫi are equal and therefore obtain a
representation of the desired form.

The following two lemmata generalize Proposition 6.

Lemma 10 Let n ∈ N, let f1, . . . , fn ∈ C[x], [fi] ≥ 2 be pairwise permutable polynomials with
gap-form and suppose that no polynomial fi is conjugated to a power or a Chebyshev polynomial.
Then (i) or (ii) holds:

(i) There exist a polynomial g and numbers m1, . . . , mn ∈ N, such that

fi = g(mi) for i = 1, . . . , n. (11)

(ii) There exist a polynomial g(x) = xkg1(x
r) where k ≥ 1, g1(0) 6= 0 and r = L(g) > 1,

numbers m1, . . . , mn ∈ N and r-th roots of unity ǫ1, . . . , ǫn, such that

fi = ǫig
(mi) for i = 1, . . . , n. (12)

Here
ǫk

mj−1
i = ǫkmi−1

j for i, j = 1, . . . , n (13)

and for at least one i ∈ {1, . . . , n} we have ǫk
i 6= 1.

Proof : First of all we clarify condition (13). To do so assume fi = ǫig
(mi) with g as above and

compute fi ◦ fj and fj ◦ fi:

fi ◦ fj = ǫix ◦ g(mi) ◦ ǫjx ◦ g(mj) = ǫiǫ
kmi

j x ◦ g(mi+mj),

fj ◦ fi = ǫjx ◦ g(mj) ◦ ǫix ◦ g(mi) = ǫjǫ
k

mj

i x ◦ g(mi+mj).

Thus fi and fj permute if and only if (13) holds.
To prove the lemma use induction on n. Consider first the case that n = 2. Then Proposition

6 implies together with Lemma 9 the assertion of the lemma.
We proceed to treat the case n > 2. The inductive hypothesis implies that (i) or (ii) holds

for the polynomials f1, . . . , fn−1.
Case 1: Assume (i) holds for f1, . . . , fn−1, i.e. we have a representation

fi = g(mi) for i = 1, . . . , n − 1.
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Let gcd(m1, . . . , mn−1) = d. As fn permutes with each polynomial fi, Lemma 1 implies that
fn permutes with g(d). Note that by Lemma 4 l(g(d)) = l(g) = l(f1) > 1. Thus Proposition 6
implies together with Corollary 2 that

g(d)(x) = ǫ1[xp(xu)](k1) and

fn(x) = ǫ2[xp(xu)](k2) with ǫu
1 = ǫu

2 = 1.

Proposition 7 shows that
g(x) = δ1[x

lq(xs)](l1) and (14)

xp(xu) = δ2[x
lq(xs)](l2) with δs

1 = δs
2 = 1.

From this we find
g(d)(x) = ǫ1δ

n1
2 [xlq(xs)](l2k1) and

fn(x) = ǫ2δ
n2
2 [xlq(xs)](l2k2)

for some n1, n2 ∈ N. In order to apply Lemma 9 we have to show that ǫs
i = 1, as then

fi(x) = γi[x
lq(xs)](l2k1

mi
d

) for i = 1, . . . , n − 1

with some s-th roots of unity γi.
If ǫ1 = ǫ2 = 1 we are done. So suppose that ǫ1 6= 1 or ǫ2 6= 1. We have

[xlq(xs)](l2) ◦ ǫix = ǫix ◦ [xlq(xs)](l2) for i = 1, 2.

As all occurring polynomials have gap-form Lemma 7 is applicable and we find l ≥ 1 and
s = L(xlq(xs)). Furthermore

u|L([xlq(xs)](l2)) = L(xlq(xs)) = s,

thus ǫs
i = 1, and Lemma 9 yields a representation of type (i) or (ii).

Case 2: Assume (ii) holds for f1, . . . , fn−1, i.e. we have a representation

fi = ǫig
(mi) for i = 1, . . . , n − 1.

Here g(x) = xkg1(x
r) with r = L(g) > 1 and (w.l.o.g.) ǫk

1 6= 1. As f1 permutes with fn

Proposition 6 together with Corollary 2 implies that

fn(x) = δ1[xq(xs)](s1) and

f1(x) = δ2[xq(xs)](s2) = ǫ1[x
kg1(x

r)](m1)

with δs
1 = δs

2 = 1. As [xq(xs)] > l(xq(xs)) = l(f1) > 1 we have by Lemma 6

s|L(xq(xs)) = L(f1),

and similarly
L(f1) = L(xkg1(x

r)) = r.

Applying Proposition 7 we find

xkg1(x
r) = γ1[x

lq1(x
t)](t1) and (15)
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xq(xs) = γ2[x
lq1(x

t)](t2)

with γt
1 = γt

2 = 1. As
[xlq1(x

t)](t1) ◦ ǫ1x = ǫk
1x ◦ [xlq1(x

t)](t1)

and l(xlq1(x
t)) = l(xkg1(x

r)) > 1 Lemma 7 implies l ≥ 1. Thus

r = L(xkg1(x
r)) = L(xlq1(x

t)) = t

(if t is chosen maximal). From this we obtain

fi(x) = ǫi[x
kg1(x

r)](mi) = ǫi[γ1[x
lq1(x

t)](t1)](mi) =

= ǫiγ
li
1 [xlq1(x

t)](t1mi)

for some numbers li, and
fn(x) = δ1[γ2[x

lq1(x
t)](t2)](s1) =

= δ1γ
ln
2 [xlq1(x

t)](s1t2)

for some number ln. As r = t and s|r we can apply Lemma 9 to obtain a representation either
of type (i) or of type (ii).

Remark 1 The splitting of the assertion of Lemma 10 into types (i) and (ii) is justified by the
following observation: If type (ii) occurs the polynomials fi have gap-form and satisfy fi(0) = 0.
On the other hand, in case of type (i), arbitrary polynomials with gap-form may occur.

From (14) and (15) we obtain the following fact.

Remark 2 In each inductive step the degree of the representing polynomial g does not increase.

The next lemma shows that the assertion of Lemma 10 remains true in the case that n → ∞.

Lemma 11 Let f1, f2, . . . ∈ C[x], [fi] ≥ 2 be a sequence of pairwise permutable polynomials
with gap-form, and suppose that no polynomial fi is conjugated to a power or a Chebyshev
polynomial. Then a representation of type (i) or type (ii) of Lemma 10 holds.

Proof : We apply Lemma 10 to {f1, f2} and obtain a polynomial g2 and a representation of
the form (11) or (12) employing g2. Proceeding from this representation we apply the inductive
step of the proof of Lemma 10 to {f1, f2, f3} and obtain a polynomial g3 and a representation of
the form (11) or (12) employing g3. Carrying on in this way we get a sequence of polynomials
gn, such that for each n a representation of the form (11) or (12) employing gn holds for fi, i

up to n. By Remark 2 we have [g2] ≥ [g3] ≥ . . ..
Let g2 be a polynomial of minimal possible degree, such that f1 and f2 admit a representation

of the form (11) or (12) involving g2. Starting the above procedure with this polynomial we
get a sequence g2, g3, . . . with [gn] ≥ [g2], as each gn yields in particular a representation of f1

and f2, by Lemma 9. Thus
[g2] = [g3] = [g4] = . . . .
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We have representations

fi = ǫi,kg
(mi)
k for i = 1, . . . , k and k ≥ 2

(independently of whether type (i) or (ii) of Lemma 10 occurs). In particular we have for each
k ≥ 3

f1 = ǫ1,2g
(m1)
2 = ǫ1,kg

(m1)
k

and thus due to Proposition 7

g2(x) = δ1[x
lp(xr)](s) and gk(x) = δ2[x

lp(xr)](s)

with δr
1 = δr

2 = 1. Here obviously δix ∈ G(f1) for i = 1, 2. Thus the numbers δi are L(f1)-th
roots of unity, i.e. g2 and gk differ only by a L(f1)-th root of unity. Therefore one specific
polynomial g = ζg2 (where ζL(f1) = 1) must occur infinitely often among the polynomials gk

and we find
fi = ǫig

(mi) for each i ∈ N.

Applying Lemma 9 yields the assertion.

Lemma 10 and Lemma 11 put us in position to give a complete list of commutative subsemi-
groups of 〈C[x], ◦〉 containing no linear polynomials.

Theorem 1 Let S be a commutative subsemigroup of 〈C[x], ◦〉 which does not contain any
linear polynomial (except possibly x itself). Then S is conjugated to a subsemigroup of one of
the following commutative semigroups:

List I

(i) Pr = {ζxk|k ≡ 1 mod r, ζr = 1},

(ii) D1 = {tn|n ∈ N},

(iii) D2 = {±tk|k odd},

(iv) R1 = 〈ǫig
(mi)|i = 1, . . . , n〉, where n ∈ N, or R1 = 〈ǫig

(mi)|i = 1, 2, . . .〉, with g(x) =
xkp(xr), k ≥ 0, ǫr

i = 1 and

ǫk
mj−1

i = ǫkmi−1
j for all i and j.

Proof : Let S be a commutative semigroup which contains no linear polynomials. The cases
(i)-(iii) are settled by Proposition 4 and Proposition 5. Thus assume that no element of S
is conjugated to a power or a Chebyshev polynomial. Let f ∈ S, [f ] = n(> 1). A result of
E.Jacobsthal (see [19]) states that for any given degree k(> 1) there are at most n − 1 poly-
nomials of degree k permuting with f . Thus S is countable and has in particular an at most
countable set of generators f1, f2, . . .. By Lemma 5 there is a conjugation ΦL such that all
polynomials ΦL(fi) have gap-form. Applying Lemma 10 or Lemma 11, respectively proves the
assertion of the theorem.
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5 A list of commutative subsemigroups of 〈C[x], ◦〉

Together with some well known results Theorem 1 will lead us to a complete list of arbitrary
commutative subsemigroups of 〈C[x], ◦〉.

First of all let us consider semigroups of linear polynomials. In [14] we find the following
result, which holds for an arbitrary field k.

Proposition 8 Let S be a commutative semigroup consisting entirely of linear polynomials.
Then S is conjugated to a subsemigroup of one of the two following commutative semigroups.

List II

(i) T = {x + a|a ∈ k},

(ii) S0 = {ax|a ∈ k, a 6= 0}.

The next result determines the set Gp(f), i.e. all linear polynomials permuting with a given
nonlinear polynomial.

Proposition 9 Let k be a field of characteristic zero, f ∈ k[x], [f ] ≥ 2 and let ΦL be a
conjugation, such that f1 = ΦL(f) has gap-form. Then Gp(f) = ΦL(−1)(Gp(f1)) and

List III

(i) Gp(f1) = {x} if f1(0) 6= 0,

(ii) Gp(f1) = {ζx|ζr = 1} if f1(0) = 0 and

r = max{u ∈ N|f1(x) = xg(xu) for some g ∈ k[x]}.

A proof of this result can be found in [13]. Proposition 9 yields the well known example of the
commutative semigroup R = 〈ζx, g〉, where g(x) = xp(xr) and ζ is a primitive r-th root of unity.
This is a special case of the commutative semigroup R1 occurring in Theorem 1 (if we add the
linear polynomials ζx): R1 = 〈ǫig

(mi)|i = 1, . . . , n〉, where n ∈ N, or R1 = 〈ǫig
(mi)|i = 1, 2, . . .〉

with g(x) = xkp(xr), k ≥ 0, ǫr
i = 1 and

ǫk
mj−1

i = ǫkmi−1
j for all i and j. (16)

The following proposition shows that this seemingly more general type of commutative
semigroups actually does not yield ”new” semigroups.

Proposition 10 Consider the commutative semigroup R1 = 〈ǫig
(mi)|i = 1, . . . , n〉 (R1 =

〈ǫig
(mi)|i = 1, 2, . . .〉, respectively) and assume (w.l.o.g.) that gcd(m1, . . . , mn) = 1

(gcd(m1, m2, m3, . . .) = 1, respectively). Then there exists an r-th root of unity γ, such that

R1 ⊆ R = 〈ξx, γg〉

where ξ is a primitive Lp(g)-th root of unity, i.e. R is commutative. Furthermore Lp(g) com-
putes as Lp(g) = gcd(k − 1, r).
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Before we can give a proof of Proposition 10, we have to state another lemma.

Lemma 12 Let n ∈ N, k, r ∈ N, k, r ≥ 2 and let m1, . . . , mn ∈ N, gcd(m1, . . . , mn) = 1. Then
the set of solutions of the system of congruences

xi(k
mj − 1) ≡ xj(k

mi − 1) mod r for i, j = 1, . . . , n (17)

equals the set of all integral linear combinations of the vectors









1 + k + . . . + km1−1

1 + k + . . . + km2−1

...
1 + k + . . . + kmn−1









,









r
gcd(k−1,r)

0
...
0









, . . . ,









0
...
0
r

gcd(k−1,r)









. (18)

Proof : Obviously every linear combination of vectors (18) gives a solution of the system
(17). To show the converse let us first compute the number of modulo r incongruent linear
combinations of the vectors (18). Note that

gcd(km1 − 1, . . . , kmn − 1) = k − 1,

i.e. there exist numbers µ1, . . . , µn, such that

k − 1 = µ1(k
m1 − 1) + . . . + µn(kmn − 1).

Dividing by k − 1 we obtain

1 = µ1(1 + k + . . . + km1−1) + . . . + µn(1 + k + . . . + kmn−1)

which yields
gcd(1 + k + . . . + km1−1, . . . , 1 + k + . . . + kmn−1) = 1. (19)

Consider a linear combination

λ0









1 + k + . . . + km1−1

1 + k + . . . + km2−1

...
1 + k + . . . + kmn−1









+ λ1









r
gcd(k−1,r)

0
...
0









+ . . . + λn









0
...
0
r

gcd(k−1,r)









(20)

and suppose that

λ0









1 + k + . . . + km1−1

1 + k + . . . + km2−1

...
1 + k + . . . + kmn−1









+







λ1
r

gcd(k−1,r)
...

λn
r

gcd(k−1,r)







≡ 0 mod r.

Then

λ0









1 + k + . . . + km1−1

1 + k + . . . + km2−1

...
1 + k + . . . + kmn−1









≡ 0 mod
r

gcd(k − 1, r)
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and thus (19) implies that

λ0 ≡ 0 mod
r

gcd(k − 1, r)
.

We found that linear combinations of type (20) with different coefficients λ0 in {1, . . . , r
gcd(k−1,r)

}

yield incongruent solutions (modulo r). For fixed λ0 ∈ {1, . . . , r
gcd(k−1,r)

} we obviously get

gcd(k − 1, r)n incongruent solutions (modulo r). In fact we found r
gcd(k−1,r)

· gcd(k − 1, r)n =

gcd(k − 1, r)n−1 · r incongruent solutions of (17), namely linear combinations of type (20) with
λ0 ∈ {1, . . . , r

gcd(k−1,r)
} and λ1, . . . , λn ∈ {1, . . . , gcd(k − 1, r)}.

We use a method which can be found e.g. in [2] (Chapter 4 of Section 2) to compute the
number of incongruent solutions of (17).

To do so consider the matrix A of coefficients of the system (17). To illustrate the form of
this matrix consider for example the case n = 4. Then we have

A =













c2 −c1 0 0
c3 0 −c1 0
c4 0 0 −c1

0 c3 −c2 0
0 c4 0 −c2

0 0 c4 −c3













, with ci = kmi − 1.

The rank of the matrix A equals n−1. We compute the greatest common divisors dh of the
h × h subdeterminants of A for h = 1, . . . , n − 1. Obviously (k − 1)h divides dh. On the other
hand we can find for each i = 1, . . . , n an h × h minor of A with determinant ±(kmi − 1)h. As
gcd((km1 − 1)h, . . . , (kmn − 1)h) = (k − 1)h we have

dh = (k − 1)h for h = 1, . . . , n − 1,

where d0 = 1 by convention. Thus the so called elementary divisors of A are given as

eh =
dh

dh−1
= k − 1 for h = 1, . . . , n − 1.

Then the number |A, r| of incongruent solutions of (17) is given by the formula

|A, r| = gcd(e1, r) · . . . · gcd(en−1, r) · r = gcd(k − 1, r)n−1 · r.

Thus each solution of the system (17) is a linear combination of the type (20) which proves
the lemma.

Proof : [of Proposition 10] If r = 1, then no nontrivial roots of unity appear, i.e. ǫi = 1. Thus
R1 ⊆ 〈g〉.

Suppose therefore r > 1 and consider first of all the cases that k = 0 or 1. If k = 0 we have
g(x) = p(xr) and thus

g(x) ◦ ǫx = g(x) whenever ǫr = 1.

As ǫig
(mi) permutes with ǫjg

(mj) we find

ǫig
(mi+mj) = ǫig

(mi) ◦ ǫjg
(mj) = ǫjg

(mj) ◦ ǫig
(mi) = ǫjg

(mj+mi),
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which implies ǫi = ǫj . Put δ = ǫ1 (= ǫ2 = ǫ3 = . . .), then

(δg)(mi) = δg(mi)

and therefore R1 ⊆ 〈δg〉.
In case that k = 1 we have

g(x) ◦ ǫx = ǫx ◦ g(x) whenever ǫr = 1.

Thus R1 ⊆ 〈ζx, g〉 where ζ denotes a primitive r-th root of unity.
In the following we may assume that k ≥ 2 and r ≥ 2, which makes the preceding lemma

applicable.
Assume for the moment that R1 = 〈ǫig

(mi)|i = 1, . . . , n〉 with n ∈ N. Let ζ be a primitive
r-th root of unity and let ǫi = ζxi. As the relations (16) hold, we find

xi(k
mj − 1) ≡ xj(k

mi − 1) mod r for i, j = 1, . . . , n.

According to Lemma 12 we have

xi ≡ λ(1 + k + . . . + kmi−1) + λir
′ mod r for i = 1, . . . , n,

where r′ = r
gcd(k−1,r)

.

Let γ = ζλ, then

(γg)(mi) = γ1+k+...+kmi−1

g(mi) = ζλ(1+k+...+kmi−1)g(mi) = ζ−λir
′

· ζxig(mi).

As (ζ−λir
′

)gcd(k−1,r) = 1 we have

ǫig
(mi) = δi(γg)(mi) for i = 1, . . . , n,

where δi are gcd(k − 1, r)-th roots of unity. Thus

ǫig
(mi) ∈ R = 〈ξx, γg〉,

where ξ is a primitive gcd(k − 1, r)-th root of unity.
Consider now the case that R1 = 〈ǫig

(mi)|i = 1, 2, . . .〉. The numbers

fh = gcd(km1 − 1, . . . , kmh − 1) for h = 1, 2, . . .

satisfy fh+1|fh for each h. Thus they must remain constant for sufficiently large h, and for such
h we have

fh = k − 1 = gcd(km1 − 1, km2 − 1, . . .)

and gcd(m1, . . . , mh) = 1. For each such h we find

ǫig
(mi) ∈ 〈ξx, γhg〉 for i = 1, . . . , h,

where ξ is a primitive gcd(k − 1, r)-th root of unity and γh is an r-th root of unity. So at least
one of the γh must occur infinitely often as h increases. Thus we find eventually for each i

ǫig
(mi) ∈ 〈ξx, γg〉

where γ is a fixed r-th root of unity, which proves the assertion of the proposition.

Putting together Proposition 8, Proposition 9, Proposition 10 and Theorem 1 we obtain a
complete list of commutative semigroups:



20

Theorem 2 Let S be a commutative subsemigroup of 〈C[x], ◦〉. Then S is conjugated to a
subsemigroup of one of the following commutative semigroups:

List IV

(i) (linear polynomials): T , S0.

(ii) (nonlinear polynomials except the trivial linear polynomial x):

P1 = {xn|n ∈ N},

D1 = {tn|n ∈ N},

Q = {g(n)|n ∈ N0} with g ∈ C[x], [g] ≥ 2,

where g has gap-form and is not conjugated to a power or a Chebyshev polynomial.

(iii) (nonlinear polynomials and nontrivial linear polynomials):
Pr = {ζxk|k ≡ 1 mod r, ζr = 1} = 〈ξx, xk|k ≡ 1 mod r〉 (r ≥ 2) where ξ is a primitive
r-th root of unity,

D2 = {±tk|k odd} = 〈−x, tk|k odd〉,

R = 〈ζx, g〉, where [g] ≥ 2

and g is not conjugated to a power or a Chebyshev polynomial, g(x) = xp(xr), r = Lp(g) >

1 and ζ is a primitive r-th root of unity.

Proof : Let S be a commutative semigroup. If S consists entirely of linear polynomials,
consider Proposition 8.

If there are nonlinear polynomials in S, consider the subsemigroup S ′ of S which contains
all nonlinear polynomials of S. Then, according to Theorem 1, a certain conjugate ΦL(S ′) of
S ′ is contained in a semigroup occurring in List I.

Suppose first ΦL(S ′) ⊆ Pr and choose r maximal. Then ΦL(S) ⊆ Pr, as no other linear
polynomials than ζx (ζr = 1) permute with ΦL(S ′).

Suppose that ΦL(S ′) ⊆ D1 or ΦL(S ′) ⊆ D2. As Gp(tn) = {x} or {±x} if n is even or odd
respectively, we again have ΦL(S) ⊆ D1 or ΦL(S) ⊆ D2.

Finally consider the case ΦL(S ′) = R1 = 〈ǫig
(mi)|i = 1, . . . , n〉 or 〈ǫig

(mi)|i = 1, 2, . . .〉 (from
the proof of Theorem 1 we see that in this case actually the equality sign holds). According
to Proposition 10 we have ΦL(S ′) ⊆ 〈ζx, g(d)〉 where d = gcd(m1, . . . , mn) (gcd(m1, m2, . . .),
respectively) and ζ is a primitive Lp(g(d))-th root of unity. Thus ΦL(S) ⊆ Q or ΦL(S) ⊆ R
holds.
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6 Maximal commutative semigroups and permutable

chains

In this section we give some applications of Theorem 2.
First it is easy to determine all maximal commutative subsemigroups of 〈C[x], ◦〉. Note that

a maximal commutative semigroup must be conjugated to one of the semigroups listed in List
IV. Thus it suffices to give conditions whether a semigroup occurring in List IV is maximal or
not. It turns out that, roughly speaking, this is the case whenever the contrary is not obvious.

Theorem 3 The commutative semigroups T ,S0,Pr (r = 1, 2, 3, . . .), D1 and D2 are maximal
(among all commutative semigroups).

The semigroup Q = {g(n)|n ∈ N} is maximal if and only if Lp(g) = 1 and g cannot be
written in the form g = f (k) for some f ∈ C[x] and k > 1.

The semigroup R = 〈ζx, g〉 is maximal if and only if g cannot be written in the form
g = ξf (k) where Lp(f) = Lp(g), k > 1 and ξL

p(g) = 1.

Proof : The assertions involving T ,S0,Pr,D1 and D2 are proved in [14].
Consider the case of Q: If Lp(g) 6= 1 then Q(〈ζx, g〉 where ζ is a primitive Lp(g)-th root

of unity. Suppose on the other hand that Q(S and Lp(g) = 1, then S cannot contain linear
polynomials. A conjugate of S appears in List IV. So the only possibility is that S is itself of
type Q. Thus {g(n)|n ∈ N}({f (n)|n ∈ N} which shows that g = f (k) for some k > 1.

Consider the case of R and assume R(S. Then a conjugate ΦL(S) must occur in List
IV. The only possibility is that ΦL(S) is of type R: ΦL(S) = 〈ξx, f〉. As g and f both have
gap-form the linear polynomial L must be a multiplication. Thus S = 〈ξx, f1〉 with f1 = ΦL(f).

Furthermore g = ξkx ◦ f
(k)
1 and therefore Lp(f1)|L

p(g). On the other hand ζ lx ∈ R(S for any
ζ lx ∈ Gp(g) and therefore Lp(g)|Lp(f1). Thus Lp(g) = Lp(f1) and as R 6= S we must have
k > 1.

As another application we solve a problem of W.Nöbauer. To do so we have to recall some
notation.

Let S be a commutative semigroup. Then the (multiplicative) semigroup M(S) = {[f ]|f ∈
S} of N is called the degree of S. Given any subsemigroup M of N we obviously have the
following commutative semigroups S with M(S) = M :

List V

(i) S = {xn|n ∈ M},

(ii) S = {ζxn|n ∈ M, ζr = 1} if M consists entirely of numbers ≡ 1 mod r,

(iii) S = {tn|n ∈ M},

(iv) S = {±tn|n ∈ M} if M consists entirely of odd numbers.

For which semigroups M are the above listed S the only commutative semigroups (apart of
conjugates) with M(S) = M ?
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Theorem 4 Let M be a (multiplicative) subsemigroup of N. Every commutative semigroup S
with M(S) = M (apart of conjugates) occurs in List V above if and only if M does not consist
entirely of powers of one specific number.

Proof : Suppose that M = {kn|n ∈ M1} for some k ∈ N and M1 ⊆ N. Let g be a polynomial
of degree k which is neither conjugated to a power nor to a Chebyshev polynomial. Consider
the commutative semigroup S = {g(n)|n ∈ M1}, then M(S) = M and no conjugate of S can
occur in List V.

On the other hand suppose M(S) = M and no conjugate of S occurs among the semigroups
listed above. In the case M = {1} we are done. If M 6= {1} the only possibility for a conjugate
of S is to be a subsemigroup of either Q or R (of List IV). In both cases M(S) ⊆ {kn|n ∈ N}
with k = [g].
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[7] L.Böttcher: Beiträge zur Theorie der Iterationsrechnung (russian),
Doctoral Dissertation, appeared in Bull.Kasan Math.Soc. 14 (1905), 176.

[8] W.Boyce: On polynomials which commute with a given polynomial,
Proc.AMS 33 (2) (1972), 229-234.

[9] F.J.Clauwens & B.J.Clauwens: Commuting polynomials and λ-ring structures on Z[x],
J. of Pure and Appl.Alg. 95 (1994), 261-269.
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[27] H.Kautschitsch: Über vertauschbare Polynome mit vorgegebenen Gradzahlen,
Arch.Math. 27 (1976), 611-619.
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