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1 Introduction

In this paper we consider an interpolation problem of Nevanlinna-Pick type: If
finitely many points z1, . . . , zn of the open upper half plane C

+ are given, we study
the existence of functions f ∈ Nπ

ν assuming prescribed values w1, . . . , wn ∈ C in
these points:

f(zi) = wi for i = 1, . . . , n. (1)

Furthermore a description of all solutions of (1) through selfadjoint extensions of
a certain symmetric operator is given.

We recall the definition of the classes Nπ
ν . If f is a complex function denote

by ρ(f) the domain of holomorphy of f .

Definition 1 Let π and ν be nonnegative integers or ∞. Denote by Nπ
ν the set

of all functions f which are meromorphic in C
+, such that the kernel

f(z) − f(w)

z − w
for z, w ∈ ρ(f)

has π positive and ν negative squares, i.e., it satisfies

1. For each k ∈ N and points ζ1, . . . , ζk ∈ ρ(f) the hermitian form

n∑

i,j=1

f(ζi) − f(ζj)

ζi − ζj

ξiξj (2)

has at most π (ν, respectively) positive (negative, respectively) squares.

2. If π (ν, respectively) is finite, then for some k ∈ N and points ζ1, . . . , ζk ∈
ρ(f) the hermitian form (2) has exactly π (ν, respectively) positive (neg-
ative, respectively) squares. If π (ν, respectively) equals ∞, then it is not
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possible to give a uniform bound for the number of positive (negative, re-
spectively) squares of the hermitian forms (2).

We assign to the prescribed data the so-called Pick matrix

P =

(

wj − wi

zj − zi

)n

i,j=1

.

Denote by πd (νd, respectively) the number of positive (negative, respectively)
eigenvalues of P, and let δd = n−(πd+νd) be its defect. Obviously it is impossible
to find solutions f of (1) in some set Nπ

ν with π < πd or ν < νd. In [12] it is
shown that there are also no solutions in sets Nπ

ν with πd < π < πd + δd or
νd < ν < νd + δd. In case δd > 0 there exists a unique solution in the set Nπd

νd

if and only if the data points do not belong to a certain ”small” exceptional set.
In this note we prove that in each set Nπ

ν with π ≥ πd + δd and ν ≥ νd + δd

there exist infinitely many solutions, and establish a one-to-one correspondence
between solutions of (1) in Nπ

ν and selfadjoint relations in certain Pontrjagin
spaces. We always suppose, that at least one of the numbers π, ν is finite.

These results are well known in the case P does not degenerate (see e.g.
[6], [10]). Therefore we can suppose that δd > 0 holds, i.e. consider only the
degenerated case |P| = 0, although the developed method does not require any
restrictions on the defect of P.

In §2 we examine a connection between the sets Nπ
ν , interpolation problems

and inner product spaces. We assign to a complex function and especially to
given interpolation data an inner product space and a symmetric operator. §3
proceeds with the definition of induced functions of an operator, and establishes
the above mentioned correspondence (Theorem 1). In the remaining part of the
paper we examine some more interpolation properties of the induced functions. §4
considers the case of semisimple eigenvalues in data points (Theorem 2), whereas
§5 gives sufficient conditions for interpolation in the most general case (Theorem
3).

Besides the method used in this note there are many different approaches
to interpolation problems of Nevanlinna-Pick type. Also there are various other
generalizations of the classical Nevanlinna-Pick problem or of related questions.
For an extensive bibliography on these subjects we refer to [2].

We use the notation and some results of the theory of Pontrjagin spaces and
linear relations, which can be found in [1], [3], [4], [5] and [7].
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2 Inner product spaces and interpolation

In this section we associate certain inner product spaces and symmetric operators
with an interpolation problem. Denote in the following by C

0 the set C
+ ∪C

− of
all nonreal complex numbers.

Definition 2 Let f : D (f) → C with D (f) ⊆ C
0 be a complex function. Here

D (f) is an arbitrary subset of C
0. Denote by Hf the linear space of all formal

sums

Hf = {
∑

z∈D(f)

xzez|xz ∈ C, xz = 0 for all but finitely many z ∈ D (f)},

equipped with the inner product defined by the relation

[ez, ew]Hf
=

f(z) − f(w)

z − w
for z, w ∈ D (f) , z 6= w.

If for some z ∈ D (f) also z ∈ D (f), we assume that f is holomorphic at z and
satisfies f(z) = f(z) in a neighborhood of z. In this case we define

[ez, ez] = f ′(z).

If no confusion can occur the index Hf at the inner product will be dropped.
Note that by definition the elements ez for z ∈ D (f) are linearly independent.

If f is an extension of g, i.e. D (g) ⊆ D (f) and f |D(g) = g, then Hg can be
considered in a canonical way as subspace of Hf .

The index ind (H) of an inner product space H is the pair (π, ν), where π (ν,
respectively) equals the maximal dimension of a positive (negative, respectively)
subspace of H. We agree that π (ν, respectively) is either a nonnegative integer
or the symbol ∞.

Let f be a function which is meromorphic in C
+. We extend f to a function

f̂ , meromorphic in C
0, by f̂(z) = f(z) for z ∈ C

−. Denote by ρ(f̂) the domain
of holomorphy of f̂ in C

0, then we will consider f̂ as function with domain
D
(

f̂
)

= ρ(f̂). A function g with D (g) = D (g) which satisfies g(z) = g(z) is
called real.

Lemma 1 Let f be a real meromorphic function in C
0. Then f ∈ Nπ

ν if and only

if ind
(

Hf̂

)

= (π, ν).

The proof of Lemma 1 can be found e.g. in [10]. Note that if f̂ is considered
as function on ρ(f̂) ∩ C

+, the above lemma just restates the definition of Nπ
ν .
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Thus the nontrivial assertion is, that, if f is extended to C
0 (in the canonical

way) the number of positive (negative, respectively) squares does not change.
In the following we will always extend meromorphic functions on C

+ to real
meromorphic functions on C

0.
Using a well known procedure we can produce a Pontrjagin space from Hf

(see e.g. [8]): Let f ∈ Nπ
ν , denote by Hf

◦ the isotropic part of Hf and consider
the inner product space Hf/Hf

◦. This space is nondegenerated and has index
(π, ν). Thus completion gives a Pontrjagin space Pf , also with index (π, ν).
Remark 1 The above construction works in two steps:

Hf
p
→ Hf/Hf

◦ i
→ Pf

with the canonical projection p and embedding i. Both mappings preserve the
inner product and the notion of convergence (introduced as in [8]). Note that
Hf/Hf

◦ is topologically exactly the T1-space associated to Hf .
Actually in the above construction either p or i is the identity mapping. This

follows from the fact that Hf
◦ 6= {0} if and only if f is rational, and in this case

π + ν = deg (f) < ∞ (these results can be found e.g. in [12]).

With the given data we associate the function d defined on {z1, . . . , zn} by d(zi) =
wi for i = 1, . . . , n, and consider the inner product space Hd. For further reference
we state another lemma; for the proof we refer to [12].

Lemma 2 Let f be a solution of (1) in Nπ
ν with Hf

◦ ∩ Hd 6= {0}. Then π = πd

and ν = νd.

With a function f we associate not only the inner product space Hf , but also
a linear operator in this space.

Definition 3 Let f : D (f) → C with D (f) ⊆ C
0 be a complex function. Denote

by Df the hyperplane

Df = {
∑

z∈D(f)

xzez ∈ Hf |
∑

z∈D(f)

xz = 0},

and define an operator Sf with domain Df as

Sf (
∑

z∈D(f)

xzez) =
∑

z∈D(f)

zxzez.

Proposition 1 The operator Sf is symmetric.
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Proof : Let x, y ∈ Df , x =
∑

z∈D(f) xzez, y =
∑

w∈D(f) ywew. Then

[Sfx, y] =




∑

z∈D(f)

zxzez,
∑

w∈D(f)

ywew



 =
∑

z,w∈D(f)

zxzyw[ez, ew] =

=
∑

z,w∈D(f)

zxzyw

f(z) − f(w)

z − w
.

In the same way we obtain

[x,Sfy] =
∑

z,w∈D(f)

wxzyw

f(z) − f(w)

z − w
.

Subtraction gives

[Sfx, y] − [x,Sfy] =
∑

z,w∈D(f)

(zxzyw − wxzyw)
f(z) − f(w)

z − w
=

=
∑

z,w∈D(f)

xzyw(f(z) − f(w)) =
∑

z,w∈D(f)

xzywf(z) −
∑

z,w∈D(f)

xzywf(w) =

=
∑

z∈D(f)




∑

w∈D(f)

yw





︸ ︷︷ ︸

0

xzf(z) −
∑

w∈D(f)




∑

z∈D(f)

xz





︸ ︷︷ ︸

0

ywf(w) = 0.

We can restate the interpolation problem (1) as follows: which functions of
Nπ

ν extend d ? We will show that in some sense these extensions correspond to
extensions of the operator Sd. æ

3 Interpolation properties of induced functions

Definition 4 Let P be a Pontrjagin space with Hd ⊆ P. Further let S be a
selfadjoint relation in P with nonempty resolvent set extending Sd. Denote by fS
the complex function

fS(z) = w1 +
ℑw1

ℑz1
(z − z1) + (z − z1)(z − z1)

[

(S− z)−1 ez1
, ez1

]

. (3)

We refer to fS as the induced function of S and consider fS as function on its
domain of holomorphy ρ(fS) in C

0.
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By an elementary computation we obtain the representation

fS(z) = ℜw1 + (z − ℜz1)
ℑw1

ℑz1

+ (z − z1)(z − z1)
[

(S− z)−1 ez1
, ez1

]

for fS. From this it follows immediately that fS is a real function.
Note that the resolvent set ρ(S)∩C

0 is a dense subset of ρ(fS). Furthermore
we have the following lemma.

Lemma 3 Consider the inner product space HfS and the subset

D =







∑

z∈ρ(fS)

xzez ∈ HfS |xz = 0 for z /∈ ρ(S)







.

The linear manifold D is dense in HfS.

Proof : Let z ∈ ρ(fS) \ ρ(S). Choose a sequence (zi)i∈N, such that zi ∈ ρ(S) and
zi → z. Then ezi

∈ D,

[ezi
, ew] =

f(zi) − f(w)

zi − w
→

f(z) − f(w)

z − w
= [ez, ew] for w 6= z,

[ezi
, ew] =

f(zi) − f(w)

zi − w
→ f ′(z) = [ez, ew] for w = z and

[ezi
, ezi

] =
f(zi) − f(zi)

zi − zi

→
f(z) − f(z)

z − z
= [ez, ez].

Thus ezi
→ ez which shows that ez ∈ D.

We define an operator U as

Uez = ez1
+ (z − z1) (S− z)−1 ez1

for z ∈ ρ(S) ∩ C
0.

Proposition 2 The operator U can be extended to an isometry from PfS into
P.

Proof : We are going to check the relation

fS(z) − fS(w)

z − w
= [Uez,Uew]P. (4)

Once (4) is established the result follows, as U in first place is an isometric
operator from D to P. As D is dense in HfS , we find U(HfS

◦) ⊆ HfS
◦. Thus U
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yields an isometry from PfS into P with domain D/HfS
◦. Again as D is dense in

HfS , D/HfS
◦ is dense in HfS/HfS

◦ and thus also in PfS. Now we can extend U

by continuity to the whole of PfS (see e.g. [11]).
It remains to verify (4). Note that we have

[Uez,Uew] =
[(

I + (z − z1) (S− z)−1
)

ez1
,
(

I + (w − z1) (S − w)−1
)

ez1

]

=

=
[(

I + (w − z1) (S− w)−1
) (

I + (z − z1) (S− z)−1
)

ez1
, ez1

]

.

The following formulas can be checked by a straightforward computation:
(

I + (w − z1) (S − w)−1
) (

I + (z − z1) (S − z)−1
)

=

= I + (z + w − 2ℜz1) (S − z)−1 + (w − z1)(w − z1) (S− z)−1 (S − w)−1 ,

and
fS(z) − fS(w)

z − w
= [ez1

+ (z + w − 2ℜz1) (S− z)−1 ez1
+

+(w − z1)(w − z1) (S − z)−1 (S− w)−1 ez1
, ez1

].

From this (4) follows.

In the following definition we recall the notion of generating elements.

Definition 5 Let A be a relation in a Pontrjagin space P, and let x ∈ P. We
call x a generating element for A if the relation

P = 〈x, (A− z)−1 x|z ∈ ρ(A)〉

holds (〈. . .〉 denotes the linear span of a set of vectors).

Proposition 3 Let S be a selfadjoint relation in P extending Sd. Suppose that
z1 ∈ ρ(S) and that ez1

is a generating element for S. Then fS ∈ Nπ
ν , where (π, ν)

is the index of P.

Proof : As U : PfS → P is an isometry, the index (π′, ν ′) of PfS is bounded by

the index of P, i.e. fS ∈ Nπ′

ν′ with π′ ≤ π and ν ′ ≤ ν.
From our assumptions we have

ez1
= Uez1

∈ R (U) ,

and for z ∈ ρ(S) ∩ C
0:

(S − z)−1 ez1
=

1

z − z1
(Uez − ez1

) ∈ R (U) .
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Thus
P = 〈ez1

, (S− z)−1 ez1
|z ∈ ρ(S) ∩ C

0〉 ⊆ R (U) ⊆ P

holds, which shows that R (U) is dense in P. Suppose e.g. π is finite. Then we
find a π-dimensional positive subspace in R (U), and therefore π′ ≥ π. If ν is
finite a similar argument shows ν ′ ≥ ν. If, on the other hand, ν is infinite, then ν ′

must also be infinite, as no finite dimensional space can be dense in some infinite
dimensional space.

Proposition 4 Let S be a selfadjoint relation in P extending Sd, and let i ∈
{1, . . . , n}. If zi ∈ ρ(S), we have fS(zi) = wi.

Proof : First consider the case i = 1. Then

fS(z1) = w1 +
ℑw1

ℑz1
(z1 − z1) = w1.

Let i 6= 1, then ezi
− ez1

∈ D (Sd) and

(Sd − zi)(ezi
− ez1

) = (ziezi
− z1ez1

) − (ziezi
− ziez1

) =

= (zi − z1)ez1
.

Thus
(ezi

− ez1
, (zi − z1)ez1

) ∈ Sd − zi ⊆ S − zi, and

((zi − z1)ez1
, ezi

− ez1
) ∈ (S− zi)

−1 .

We compute

fS(zi) = w1 +
ℑw1

ℑz1

(zi − z1) + (zi − z1)[ezi
− ez1

, ez1
] =

= w1 +
ℑw1

ℑz1
(zi − z1) + (zi − z1)

(

wi − w1

zi − z1
−

ℑw1

ℑz1

)

= wi.

In the following we consider the eigenvalues of the selfadjoint extensions of Sd.
Denote by K (A) the kernel of the operator A.
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Lemma 4 Let S be a selfadjoint relation in P extending Sd, and let λ ∈
σp(S), λ 6= 0. Then for x ∈ K (S− λ) and i, j = 1, . . . , n the relation

(λ − zi)[x, ezi
] = (λ − zj)[x, ezj

] (5)

holds. If in particular λ = zi0 for some i0 ∈ {1, . . . , n}, then

[x, ezj
] = 0 for j 6= i0.

Proof : As x ∈ K (S − λ) we have (x, λx) ∈ S. Consider the element ezj
− ezi

(j 6= i). Then
(ezj

− ezi
, zjezj

− ziezi
) ∈ Sd ⊆ S.

As S is selfadjoint we find

λ[x, ezj
] − λ[x, ezi

] = [λx, ezj
− ezi

] =

= [x, zjezj
− ziezi

] = zj [x, ezj
] − zi[x, ezi

],

which implies (5). The remaining assertion is obvious.

Lemma 5 Let S be a selfadjoint relation in P with nonempty resolvent set ex-
tending Sd, and suppose that ez1

is a generating element for S. Then zj ∈ ρ(S)
for j 6= 1.

Proof : It suffices to show that K (S− zj) = {0} for j = 2, . . . , n. If x ∈
K (S − zj) and z ∈ ρ(S), then (S− z)−1 x ∈ K (S− zj). The preceeding lemma
yields

[(S− z)−1 x, ez1
] = 0.

As x is also orthogonal to ez1
and ez1

is a generating element for S, we find x ⊥ P,
which implies x = 0.

Denote with Sd(π, ν) the class of all selfadjoint relations which operate in a Pontr-
jagin space with index (π, ν), have ez1

as generating element, extend Sdand satisfy
z1 ∈ ρ(S). Combining the above results we obtain the following statement.

Proposition 5 The assignment S → fS defines a mapping Q from Sd(π, ν) into
the set of all solutions of (1) in Nπ

ν .
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Remark 2 Let (πd, νd) be the signature of the Pick matrix P and let δd be its
defect. Then ind (Hd) = (πd, νd) and dim (Hd

◦) = δd. As P is a Pontrjagin space
we conclude π ≥ πd + δd and ν ≥ νd + δd.

To show that every solution can be obtained in this way we proceed from a
solution f of (1) in Nπ

ν with π ≥ πd + δd and ν ≥ νd + δd, and construct a relation
S ∈ Sd(π, ν) with f = fS. To do so consider the operator Sf , which extends
Sd, as f extends d. As Sf is symmetric, it yields a symmetric relation in the
Pontrjagin space Pf . Denote by S its closure.

Lemma 2 shows that Hd is embedded in Pf and therefore S is an extension
of Sd.

Lemma 6 The relation S is selfadjoint. Furthermore we have ρ(f) ⊆ ρ(S).

Proof : We consider the range of (Sf − z) for z ∈ ρ(f). Since

(Sf − z)
(

ew − ez

w − z

)

= ew for w 6= z

we find that R (Sf − z) is dense in Hf , and therefore that R (S− z) is dense in
Pf . Since S is a symmetric closed relation, the range of S − z is closed for all
z ∈ C

0. Thus R (S− z) = Pf . From this we find

K (S− z) ⊆ R (S− z)⊥ = {0} for z ∈ C
0,

Thus S is selfadjoint and ρ(S)∩C
0 = C

0 \σp(S). As K (S− z) = {0} for z ∈ ρ(f)
we find ρ(f) ⊆ ρ(S).

Proposition 6 Let f ∈ Nπ
ν be a solution of the interpolation problem (1). Then

we have f = fS for the selfadjoint relation S constructed above. Furthermore
S ∈ Sd(π, ν).

Proof : We first show that S ∈ Sd(π, ν). As z1 ∈ ρ(f) we find z1 ∈ ρ(S). Let
z 6= z1, then

(S − z)−1 ez1
=

ez1
− ez

z1 − z
,

which implies
ez ∈

〈

ez1
, (S− z)−1 ez1

|z ∈ ρ(S)
〉

.
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Thus
Pf =

〈

ez1
, (S − z)−1 ez1

|z ∈ ρ(S)
〉

,

which shows that ez1
is an generating element for S.

Let z ∈ ρ(f), z 6= z1, then

fS(z) = w1 +
ℑw1

ℑz1
(z − z1) + (z − z1)[

ez1
− ez

z1 − z
, ez1

] =

= w1 +
ℑw1

ℑz1

(z − z1) + (z − z1)(
f(z) − f(z1)

z − z1

−
ℑw1

ℑz1

) = f(z).

Remark 3 As ρ(f) is the domain of holomorphy of f , f cannot be extended.
Thus fS(z) = f(z) for z ∈ ρ(f) implies ρ(S)∩C

0 ⊆ ρ(f). Together with Lemma
6 this shows ρ(S) ∩ C

0 = ρ(f) = ρ(fS). Furthermore |C± \ ρ(f)| ≤ min(π, ν).

Due to Proposition 6 the mapping Q is surjective. We proceed determining the
kernel of Q.

Definition 6 Let P1 and P2 be Pontrjagin spaces extending Hd, and let S1 and
S2 be selfadjoint relations with nonempty resolvent set in P1 and P2 respectively.
We call S1 and S2 unitary equivalent with respect to Hd, if there exists a unitary
operator U : P1 → P2 which leaves Hd pointwise invariant and satisfies

U ◦ (S1 − z)−1 = (S2 − z)−1 ◦ U for z ∈ ρ(S1) ∩ ρ(S2). (6)

Lemma 7 Let S1 and S2 be relations in P1 and P2 respectively, which are unitary
equivalent with respect to Hd. Then the functions fS1

and fS2
coincide.

Proof : Let z ∈ ρ(S1) ∩ ρ(S2), then we have (6), which shows

[(S1 − z)−1 ez1
, ez1

] = [U−1 ◦ (S2 − z)−1 ◦ Uez1
, ez1

] =

= [(S2 − z)−1
Uez1

,Uez1
] = [(S2 − z)−1 ez1

, ez1
],

and therefore fS1
(z) = fS2

(z). Since ρ(S1) ∩ ρ(S2) is dense in ρ(fS1
) and ρ(fS2

)
we find fS1

= fS2
.

A certain converse to the above lemma is given by
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Lemma 8 Let S be a selfadjoint relation of class Sd(π, ν). Denote by SfS the
selfadjoint relation in the Pontrjagin space PfS, which has been constructed for
the proof of Proposition 6, starting from the function fS. Then S and SfS are
unitary equivalent with respect to Hd.

Proof : Consider the isometric operator U defined in Proposition 2. We have
shown in Proposition 3 that under the assumptions of the lemma R (U) is dense
in P. Thus U is actually unitary. It remains to prove (6).

Consider the vector ez ∈ PfS

for some z ∈ ρ(S) ∩ ρ(SfS), then

Uez = ez1
+ (z − z1) (S− z)−1 ez1

,

where the right hand side is an element of P. We compute for w ∈ ρ(S)∩ ρ(SfS):

(S− w)−1 ◦Uez = (S− w)−1 ez1
+ (z − z1) (S− w)−1 (S− z)−1 ez1

=

= (S − w)−1 ez1
+

z − z1

z − w

[

(S− z)−1 ez1
− (S− w)−1 ez1

]

=

=
z − z1

z − w
(S− z)−1 ez1

−
w − z1

z − w
(S− w)−1 ez1

.

On the other hand we have
(

ez − ew

z − w
, ez

)

∈ SfS − w,

which implies

(SfS − w)−1 ez =
ez − ew

z − w
.

Thus

U ◦ (SfS − w)−1 ez = U

(
ez − ew

z − w

)

=

=
1

z − w

[

(z − z1) (S− z)−1 ez1
− (w − z1) (S − w)−1 ez1

]

and (6) holds.

Let πd + δd ≤ π and νd + δd ≤ ν. Then we obtain by combining Proposition 5
and Proposition 6 with Lemma 7 and Lemma 8 the following result.

Theorem 1 The mapping Q which assigns to each selfadjoint relation S its in-
duced function fS establishes a bijective correspondence between the set of all
solutions of (1) in Nπ

ν and the class Sd(π, ν) modulo unitary equivalence with
respect to Hd.
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Remark 4 Since unitary equivalent relations have the same spectrum and
ρ(SfS) ∩ C

0 = ρ(fS), we have

ρ(S) ∩ C
0 = ρ(fS) for each relation S ∈ Sd(π, ν).

4 Semisimple eigenvalues in data points

We consider in this paragraph the case that for a selfadjoint extension S of Sd

(in an Pontrjagin space P) with nonempty resolvent set the point zj for some
j ∈ {1, . . . , n} is a semisimple eigenvalue, i.e., that

K (S − zj)
2 = K (S− zj) 6= {0}.

Denote the kernel K (S − zj) with K+ and K (S − zj) with K−. The subspaces
K+ and K− are neutral, skewly linked and finite dimensional. Thus P decomposes
as

P = K⊥[+̇]
(

K++̇K−
)

(7)

where K⊥ denotes the orthogonal complement of K = K++̇K−. According to
this decomposition we write vectors x ∈ P as x = x⊥ + x+ + x−.

The selfadjoint relation S also decomposes with respect to (7).

Proposition 7 Denote with S′ the relation S′ = S∩
(

K⊥
)2

= S|K⊥ of K⊥. Then
we have

S = S′ (+̇) zjI|K+ (+̇) zjI|K−. (8)

The relation S′ is selfadjoint in the Pontrjagin space K⊥.

Proof : Obviously S′, zjI|K+, zjI|K− ⊆ S. Thus the inclusion ”⊇” of (8) holds.
To establish the converse inclusion let (x, y) ∈ S, x = x⊥ + x+ + x−. Then
(x+, zjx

+) and (x−, zjx
−) are elements of S. Consider u = y − zjx

+ − zjx
−, then

(x⊥, u) ∈ S. As S is selfadjoint we have for v ∈ K (S− zj)

[u, v] = [x⊥, zjv] = 0,

and for v ∈ K (S − zj)
[u, v] = [x⊥, zjv] = 0.
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Thus u ∈ K⊥, and

(x, y) = (x⊥, u) + (x+, zjx
+) + (x−, zjx

−).

As the domains (ranges, respectively) of the relations on the right hand side
of (8) are disjoint subspaces the sum in (8) is direct.

Obviously the restriction of S to K⊥ is closed, and the inclusion S′ ⊆ S′∗

holds, as S is selfadjoint. To prove the converse inclusion let (u, v) ∈ S′∗. Then
we have [u, y] = [v, x] for (x, y) ∈ S′ by definition, and for (x, zjx) ∈ I|K+ we
find [u, zjx] = 0 = [v, x], as u, v ∈ K⊥. Similar [u, zjx] = 0 = [v, x] holds
for (x, zjx) ∈ I|K−. As (8) holds, we conclude (u, v) ∈ S∗ = S. Furthermore
u, v ∈ K⊥ implies (u, v) ∈ S′.

To prove the main result of this paragraph we have to do some computations,
which are given in the following lemmata.

Lemma 9 Using the above notation we have for i ∈ {1, . . . , n}:

e−zi
=

zj − zj

zi − zj

e−zj
,

and for i 6= j
e+

zi
= 0.

Proof : For i = j the assertion is trivial, so assume i 6= j. Then

(ezi
− ezj

, (zi − zj)ezi
− (zj − zj)ezj

) ∈ Sd − zj ⊆ S− zj .

Comparing components with respect to (7) gives

(ezi

⊥ − ezj

⊥, (zi − zj)ezi

⊥ − (zj − zj)ezj

⊥) ∈ S′ − zj ,

(zj − zj)e
+
zi
− (zj − zj)e

+
zj

= (zi − zj)e
+
zi
− (zj − zj)e

+
zj

, (9)

0 = (zi − zj)e
−

zi
− (zj − zj)e

−

zj
. (10)

From (9) and (10) the assertion of the lemma follows.

Lemma 10 Let z ∈ ρ(S). Then

[(S− z)−1 ez1
, ez1

] = [(S′ − z)
−1

ez1

⊥, ez1

⊥]+

+
1

zj − z
[e+

z1
, e−z1

] +
1

zj − z
[e−z1

, e+
z1

]. (11)
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Proof : As K+ and K− are invariant under (S − z)−1, so is K⊥. Thus (S′ − z)
−1

is an operator defined on the whole of K⊥. Furthermore

(S− z)−1 ez1

⊥ = (S′ − z)
−1

ez1

⊥.

We compute

[(S − z)−1 (ez1

⊥ + e+
z1

+ e−z1
), (ez1

⊥ + e+
z1

+ e−z1
)] =

= [(S− z)−1 ez1

⊥, ez1

⊥] + [(S− z)−1 e+
z1

, e−z1
] + [(S − z)−1 e−z1

, e+
z1

].

As (e+
z1

, (zj − z)e+
z1

) ∈ S − z and (e−z1
, (zj − z)e−z1

) ∈ S− z, we find

(S− z)−1 e+
z1

=
1

zj − z
e+

z1
and (S − z)−1 e−z1

=
1

zj − z
e−z1

which proves (11).

Theorem 2 Let j ∈ {1, . . . , n} and let S be a selfadjoint relation extending Sd

and satisfying
K (S − zj)

2 = K (S− zj) 6= {0}.

Then fS(zj) = wj if and only if [e+
zj

, e−zj
] vanishes.

Proof : Consider first the case j 6= 1. Then

(ezj
− ez1

, (zj − z1)ez1
) ∈ S − zj ,

which implies
(

ezj

⊥ − ez1

⊥

zj − z1

, ez1

⊥

)

∈ S′ − zj .

As K (S′ − zj) = {0} we have zj ∈ ρ(S′). Thus

(S′ − z)
−1

ez1

⊥ =
ezj

⊥ − ez1

⊥

zj − z1

,

and, with regard to e+
z1

= 0 and (11):

lim
z→zj

(z − z1)[(S− z)−1 ez1
, ez1

] = lim
z→zj

(z − z1)[(S
′ − z)

−1
ez1

⊥, ez1

⊥] =

= (zj − z1)[(S
′ − zj)

−1
ez1

⊥, ez1

⊥] = [ezj

⊥ − ez1

⊥, ez1

⊥] =
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= [ezj
− ez1

, ez1
] − [e+

zj
, e−z1

]. (12)

In the proof of Proposition 4 we have seen that fS(zj) = wj is equivalent to

lim
z→zj

(z − z1)[(S− z)−1 ez1
, ez1

] = [ezj
− ez1

, ez1
].

Due to (12) this is the case if and only if [e+
zj

, e−z1
] = 0, which is equivalent to

[e+
zj

, e−zj
] = 0, as e−z1

and e−zj
are linearly dependend.

In the case j = 1 the interpolation condition fS(z1) = w1 is satisfied if and
only if the expression [(S− z)−1 ez1

, ez1
] is bounded at z1. As z1 ∈ ρ(S′) in this

case this is, in view of (11), equivalent to [e+
z1

, e−z1
] = 0.

5 Interpolation through arbitrary selfadjoint

extensions

Let S be a selfadjoint extension of Sd in a Pontrjagin space with index (π, ν).
Then the first part of the proof of Proposition 3 implies that fS ∈ Nπ′

ν′ for some
π′ ≤ π and ν ′ ≤ ν. From Proposition 4 it follows that, if a data point zj is in the
resolvent set of S, the function fS satisfies fS(zj) = wj.

In this section we consider an arbitrary selfadjoint extension S of Sd and give
a weaker condition, which is also sufficient for fS(zj) = wj.

We start with two lemmata about restrictions and factorizations of relations.

Lemma 11 Let A be a relation in a Pontrjagin space P, let L be a (closed)
subspace of P and consider the relation A′ = A|L. If z ∈ ρ(A) and L is invariant

under (A − z)−1, then z ∈ ρ(A′) and

(A − z)−1 |L = (A′ − z)
−1

. (13)

Proof : Obviously K (A′ − z) = {0}. Let x ∈ L and consider y = (A − z)−1 x,

then y ∈ L. Thus (y, x) ∈ (A−z)∩L2 = (A′−z) which implies (A′ − z)
−1

x = y.

This proves (13) and shows that (A′ − z)
−1

is defined on the whole of L. As

(A − z)−1 is bounded, so is (A′ − z)
−1

and thus z ∈ ρ(A′).

Note that the subspace L may be degenerated. We define a relation A′′ in L/L◦

as
(x + L◦, y + L◦) ∈ A′′ ⇐⇒ (x, y) ∈ A′.
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Lemma 12 In the situation of Lemma 11 suppose that L◦ is invariant under
(A′ − z)

−1
. Then z ∈ ρ(A′′) and

(A′′ − z)
−1

(x + L◦) = (A′ − z)
−1

x + L◦.

Proof : Let x + L◦ ∈ K (A′′ − z), i.e. (x + L◦,L◦) ∈ (A′′ − z). Then there
exist x′, y′ ∈ L such that x′ − x ∈ L◦, y′ ∈ L◦ and (x′, y′) ∈ (A′ − z). Thus

x′ = (A′ − z)
−1

y′ which implies x′ ∈ L◦ and consequently x + L◦ = L◦, hence
K (A′′ − z) = {0}.

Let x ∈ L and consider y ∈ (A′ − z)
−1

x. Then (y, x) ∈ (A′−z) and therefore

(y +L◦, x+L◦) ∈ (A′′−z). This implies y +L◦ = (A′′ − z)
−1

(x+L◦) and shows

that (A′′ − z)
−1

is everywhere defined.
It remains to show that (A′′ − z)−1 is continous. Consider the decomposition

P = L1[+̇](L◦+̇L̂◦)[+̇]L2

with L = L1[+̇]L◦. Let x̂n ∈ L/L◦ be a sequence which converges to x̂. We
may assume that the representators xn and x of x̂n and x̂ are elements of L1.
As L1 is orthocomplemented the sequence xn converges to x in the topology of
P. Thus (A − z)−1 xn → (A − z)−1 x, which shows that also (A′′ − z)−1 x̂n →
(A′′ − z)−1 x̂.

We now apply the above lemmata to the following situation. Let S be a selfadjoint
extension of Sd in a Pontrjagin space P with nonempty resolvent set. Choose the
subspace L as

L = 〈ezi
, (S− w)−1 ezi

|w ∈ ρ(S), i = 1, . . . , n〉. (14)

Lemma 13 The subspaces L and L◦ are invariant under the resolvents
(S − z)−1, z ∈ ρ(S).

Proof : Let i ∈ {1, . . . , n}. Then for z, w ∈ ρ(S), z 6= w we have (S − z)−1 ezi
∈ L

and

(S − z)−1 (S− w)−1 ezi
= (z − w)

(

(S− z)−1 ezi
− (S− w)−1 ezi

)

∈ L.

As (S − z)−1 depends continously on z also

(S− w)−1 (S− w)−1 ezi
∈ L.

As S is selfadjoint this also implies that L◦ is invariant under each resolvent.

In the sequel we use the notation developed above. The next lemma provides the
main tool for proving the below theorem.
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Lemma 14 Let ezj
∈ R (S′ − zj). Then R (S′ − zj) = L.

Proof : As S′ is closed it suffices to show that R (S′ − zj) is dense in L. As

R (S′ − zj) is invariant under each resolvent (S′ − z)
−1

it suffices to show ezi
∈

R (S′ − zj) for i = 1, . . . , n. Due to the assumption of the lemma we may assume
i 6= j. Then ezi

− ezj
∈ L and

(ezi
− ezj

, (zi − zj)ezi
) ∈ (S′ − zj).

Theorem 3 Let S be a selfadjoint relation with nonempty resolvent set extending
Sd and operating in a Pontrjagin space P with index (π, ν). Suppose

ezj
∈ R (S − zj) |L for j = 1, . . . , n,

where the subspace L is defined as in (14). Then the induced function fS is a
solution of the interpolation problem (1) in some set Nπ′

ν′ with π′ ≤ π and ν ′ ≤ ν.

Proof : The relation S′′ is symmetric and closed. Furthermore ρ(S) ⊆ ρ(S′′)

which implies ρ(S′′) ∩ C
± 6= ∅. Thus dim (K (S′′ − zj)) − dim

(

R (S′′ − zj)
⊥
)

= 0

on C
0. As R (S′′ − zj) = L/L◦ we must also have K (S′′ − zj) = {0} and therefore

zj ∈ ρ(S′′).
Let j 6= 1, then we have

(ezj
− ez1

+ L◦, (zj − z1)ez1
+ L◦) ∈ (S′′ − zj),

and thus

lim
z→zj

(z − z1)[(S− z)−1 ez1
, ez1

] = lim
z→zj

(z − z1)[(S
′′ − z)

−1
ez1

+ L◦, ez1
+ L◦] =

= (zj − z1)[(S
′′ − zj)

−1
ez1

+ L◦, ez1
+ L◦] =

= (zj − z1)[ezj
− ez1

+ L◦, ez1
+ L◦],

which implies limz→zj
fS(z) = wj .

Consider now the case j = 1. Then z1 ∈ ρ(S′′) implies that [(S′′ − z)
−1

ez1
+

L◦, ez1
+ L◦] is bounded at z1. Thus limz→z1

(z − z1)[(S− z)−1 ez1
, ez1

] = 0 and
fS(z1) = w1.

æ
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[10] M.G.Krein & H.Langer: Über einige Fortsetzungsprobleme, die eng mit der
Theorie hermitescher Operatoren im Raume Πκ zusammenhängen. (I.) Einige
Funktionenklassen und ihre Darstellungen,
Math.Nachr. 77 (1977), 187-236.

[11] J.v/d Ploeg: Operator functions and associated reproducing kernel Pontrjagin
spaces,
University of Groningen, preprint.

[12] H.Woracek: Nevanlinna-Pick interpolation: The degenerated case,
preprint.

æ


