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1 Introduction

Treating topological algebra it seems natural to ask whether on a given algebraic struc-
ture there exists a topology such that all fundamental operations are continuous or
not. Some results about this problem can be found in [4], [5], [7], [8], [9], [10], [11] or
[12]. In many places topologies which are uniformizable, possess a countable basis of
neighborhoods and are such that all fundamental operations are uniformly continuous
are of importance. As examples I-adic topologies on rings, where I is an ideal of a ring
may serve, see e.g. [3] or [6]. Also in the theory of topological groups one often deals
with such topologies.

In this paper we consider a universal algebra 〈A,F 〉. Denote with U the set of all
uniformities on A, which satisfy the first axiom of countability and are such that the
family of translations of A is uniformly equicontinuous. Our aim is to describe U in an
‘algebraic’ way.

J.O.Kiltinen defined in [8] so called inductive ring topologies to investigate the
existence of non trivial topologies of the above kind on commutative rings with unity.
We will adapt the idea of this inductive process to the case of a universal algebra. This
provides a method to investigate the above mentioned question in a general setting.

In §2 we construct certain uniformities on the algebra of terms TF (X). This con-
struction could be used in a more general topological context. We make use of evalu-
ation homomorphisms to obtain uniformities in U . All uniformities in U can be con-
structed in this way, as is shown in §3. Finally, in §4 we modify our method to describe
all so called equivalence uniform structures on A holding the above properties.

From the viewpoint of general topology our results can be interpreted as a descrip-
tion of all metrizable uniformities with a prescribed uniformly equicontinuous family of
functions.

We use the notation of [1] and [2] for topological and algebraic notions, respec-
tively. Throughout the paper we assume that all constant functions are fundamental
operations, which is no loss of generality.

2 Construction of uniformities on the algebra of terms

Let 〈A,F 〉 be a universal algebra on the set A of type F . Assume that all constant
functions are fundamental operations. For f ∈ F let σ(f) be the arity of f . We denote
with TF (X) the algebra of terms of type F over the set X = {Xn|n = 1, 2, 3, . . .} of
indeterminates.
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Let f ∈ F, 1 ≤ i ≤ σ(f) and let b1, . . . , bi−1, bi+1, . . . , bσ(f) be elements of A. Then
the function

t(x) = f(b1, . . . , bi−1, x, bi+1, . . . , bσ(f))

is called a translation. We denote the set of all translations with T (A).
A translation can be understood either as function on TF (X) or as function on

A itself. It will be clear from the context on which domain a considered translation
operates.

Definition 1 (First inductive process) Let (Mk)k∈IN be a sequence of relations on
TF (X) or A. Define for k, n ∈ IN, k ≤ n sets W n

k as

1. W n
k = Mk if k = n, and

2. W n
k =

{

(t(e), t(e′)) ∈ TF (X)2
∣

∣

∣ (e, e′) ∈ W n
k+1, t ∈ T (A)

}

∪ W n−1
k if k < n.

(1)

Further denote with Wk the union Wk =
⋃

n≥k

W n
k .

In the following denote with ◦ the relational product.

Definition 2 (Second inductive process) Let (Mk)k∈IN be a sequence of relations
on TF (X) or A. Define for k, n ∈ IN, k ≤ n sets V n

k as

1. V n
k = Mk if k = n, and

2. V n
k = (V n

k+1 ◦ V n
k+1) ∪ V n−1

k if k < n.
(2)

Further denote with Vk the union Vk =
⋃

n≥k

V n
k .

We have defined relations on TF (X) (or on A) by an inductive procedure, using the
following arrangement of the sets W n

k (V n
k , respectively).

W 1
1 W 2

1 W 3
1 W 4

1
. . . ↑

. . . ↑
. . . ↑ . . . . . . . .

W 2
2 W 3

2 W 4
2

. . . ↑
. . . ↑

. . . ↑
W 3

3 W 4
3 W 5

3
. . . ↑

. . . ↑ . .
W 4

4 W 5
4

. . . ↑
W 5

5
. . .

(3)
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To prove assertions on such inductively defined sets we will often use ‘induction on the
diagonals’ of scheme (3). This means that we let n = k + l (l ≥ 0) and use induction
on l.

Now we investigate some properties of these inductive constructions.

Lemma 1 Let (Mk)k∈IN be a sequence of relations on TF (X) or A. Suppose Mk+1 ⊆
Mk holds for each k ∈ IN, and consider the relations W n

k and V n
k given by (1) and (2),

respectively. Then W n+1
k+1 ⊆ W n

k and V n+1
k+1 ⊆ V n

k holds for k, n ∈ IN, k ≤ n. Thus we
also have Wk+1 ⊆ Wk and Vk+1 ⊆ Vk for each k ∈ IN.

Proof : Let n = k + l and use induction on l. The assumption of the lemma settles
the case l = 0. For l > 0 we have from the inductive hypothesis

W
(k+1)+(l−1)+1
(k+1)+1 ⊆ W

(k+1)+(l−1)
(k+1) ⊆ W

(k+1)+(l−1)−1
(k+1)−1 .

The assertion now follows from the definition (1) of W n
k . For the relations V n

k the proof
is analogous.

Let ∆ always be the identity relation on the considered set. Denote with R the set of
all sequences of relations (Mk)k∈IN on TF (X), which satisfy

∆ ⊆ Mk, M−1
k = Mk and Mk+1 ⊆ Mk for k ∈ IN. (4)

Lemma 2 Let (Mk)k∈IN ∈ R. Then the sequence (Wk)k∈IN given by Definition 1 is an
element of R, and additionally satisfies

t(Wk+1) ⊆ Wk for t ∈ T (A) and k ∈ IN.

Proof : The proof follows immediately from our definitions and Lemma 1.

Lemma 3 Let (Mk)k∈IN ∈ R satisfy

t(Mk+1) ⊆ Mk for t ∈ T (A) and k ∈ IN. (5)

Then the sequence (Vk)k∈IN given by Definition 2 is element of R, satisfies (5) and

Vk+1 ◦ Vk+1 ⊆ Vk for k ∈ IN. (6)

Proof : It is obvious that (Vk)k∈IN is element of R, whereas (6) is a consequence of
our definitions and the fact that the rows of the corresponding scheme of form (3) are
ascending chains. To proof (5) first note that it is enough to show

t
(

V n
k+1

)

⊆ V n
k for t ∈ T (A) and k ≤ n.
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Now we use induction on the diagonals of (3). So let (p, q) ∈ V n
k+1, then either

(p, q) ∈ V n−1
k+1 or (p, q) = (p, r) ◦ (r, q) with (p, r), (r, q) ∈ V n

k+2. Applying the in-
ductive hypotheses we find in both cases (t(p), t(q)) ∈ V n

k .

Let us recall the notion of uniform equicontinuity: If N is a uniform structure on a
set A and T is a family of functions on A, T is called uniformly equicontinuous, if
for each neighbourhood N ∈ N there is a common neighbourhood M ∈ N , such that
t (M) ⊆ N holds for each t ∈ T .

In the sequel we denote with Ut the set of all uniformities on TF (X), which sat-
isfy the first axiom of countability, and are such that the family T (A) is uniformly
equicontinuous.

Combining the above results we obtain the following theorem.

Theorem 1 Let (Mk)k∈IN ∈ R. Then the sequence (Vk)k∈IN constructed by applying
the first inductive process to (Mk)k∈IN, and applying the second inductive process to the
resulting sequence (Wk)k∈IN, forms a basis of a uniformity N ind ((Mk)k∈IN) on TF (X).
Furthermore N ind ((Mk)k∈IN) is element of Ut.

Remark 1 From T (A) being uniformly equicontinuous, we know that all fundamental
operations are uniformly continuous. If the type F is bounded, i.e. for some N ∈ IN
there is no f ∈ F with σ(f) > N , the family of fundamental operations is uniformly
equicontinuous. If we furthermore assume that we have only finitely many fundamen-
tal operations of type σ(f) ≥ 1, then T (A) being uniformly equicontinuous is even
equivalent to all fundamental operations being uniformly continuous.

Remark 2 If for each k ∈ IN we have some n(k) ∈ IN with Mn(k) ◦Mn(k) ⊆ Mk, then
the sequence (Mk)k∈IN forms the basis of some uniformity N on TF (X). In this case
N ind ((Mk)k∈IN) is coarser than N .

In the next section we will need one more result concerning the first and second inductive
process.

Lemma 4 Let (Mk)k∈IN and (Nk)k∈IN be sequences of relations on TF (X) or A with
Mk ⊆ Nk for k ∈ IN. Further let (Wk)k∈IN ((Vk)k∈IN, respectively) be the sequence
obtained by applying the first (second, respectively) inductive process to (Mk)k∈IN. If
(Nk)k∈IN satisfies

t(Nk+1) ⊆ Nk for t ∈ T (A) and k ∈ IN,

then Wk ⊆ Nk for k ∈ IN. If (Nk)k∈IN satisfies

Nk+1 ◦ Nk+1 ⊆ Nk for k ∈ IN,

then Vk ⊆ Nk for k ∈ IN.

Proof : Using induction on the diagonals the proof is straightforward.
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3 Inductive uniformities on A

We are going to use so called evaluation homomorphisms to transport uniformities of
TF (X) to A.

Let us recall: For a sequence (ai)i∈IN of elements of A the mapping

Φ(ai) : TF (X) → A,

which maps Xi to ai for each i ∈ IN and acts identically on A is called an evaluation
homomorphism.

Let κ : AIN → R be a mapping, assigning to each sequence (ai)i∈IN of elements of A

a sequence
(

M
(ai)
k

)

k∈IN
, holding the properties (4). From each sequence

(

M
(ai)
k

)

k∈IN

we obtain a basis
(

V
(ai)
k

)

k∈IN
of N ind

(

(

M
(ai)
k

)

k∈IN

)

as in Theorem 1.

Definition 3 Let κ be a mapping, κ : AIN → R. For (ai)i∈IN ∈ AIN and k ∈ IN let

Vk
′(ai) = Φ(ai)

(

V
(ai)
k

)

,

and denote with Vk
′κ the union

Vk
′κ =

⋃

(ai)∈AIN

Vk
′(ai).

Applying the second inductive process to the sequence (Vk
′κ)k∈IN

we obtain a sequence
(Uκ

k )k∈IN
of relations on A.

The sequence (Uκ
k )

k∈IN
will give a uniformity on A holding the desired properties.

Lemma 5 The sequence (Vk
′κ)k∈IN

possesses the properties (4), and

t
(

V ′κ
k+1

)

⊆ Vk
′κ for t ∈ T (A) and k ∈ IN. (7)

Proof : Recall that all constant functions are fundamental operations, and note that
in our assertions only unary functions occur. Thus it is enough to show the appropriate
properties for the sets Vk

′(ai). For these sets (4) is obvious. As Φ(ai) is a homomorphism
(7) holds.

Let now N ∈ U , and let (Nk)k∈IN be a basis of N holding the properties (4),
Nk+1 ◦ Nk+1 ⊆ Nk and t(Nk+1) ⊆ Nk for t ∈ T (A) and k ∈ IN.

Definition 4 For a sequence (ai)i∈IN of elements of A and k ∈ IN denote with M
(ai)
k

the relation
M

(ai)
k =

{

(p, q) ∈ TF (X)2
∣

∣

∣

(

Φ(ai)(p),Φ(ai)(q)
)

∈ Nk

}

(8)

on TF (X).

Obviously (M
(ai)
k )k∈IN ∈ R. Thus we may define κN : AIN → R as κN ((ai)i∈IN) =

(M
(ai)
k )k∈IN.
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Lemma 6 For each k ∈ IN we have Nk ⊆ Vk
′κN

Proof : For any pair (a, b) ∈ Nk consider the sequence (ai)i∈IN = (a, b, b, b, . . .). We

have (X1,X2) ∈ M
(ai)
k , and therefore (X1,X2) ∈ V

(ai)
k . Thus (a, b) = Φ(ai) ((X1,X2)) ∈

Vk
′(ai) ⊆ Vk

′κN .

Theorem 2 Let κ be a mapping, κ : AIN → R. Then the sequence (Uκ
k )

k∈IN
given

in Definition 3 forms a basis of a uniformity Nind(κ) on A. We have Nind(κ) ∈ U .
Conversly let N ∈ U , then N = Nind(κN ).

Proof : From Lemma 2 and Lemma 3 we get that (Uκ
k )k∈IN is a basis of some uniformity

Nind(κ) on A. That T (A) is uniformly equicontinuous with respect to Nind(κ) is proved
as (5) of Lemma 3.

To prove the converse statement note Nk ⊆ Vk
′κN ⊆ U

κN

k . To show the other

inclusion, consider the relations V
(ai)
k . From Lemma 4 we get V

(ai)
k ⊆ M

(ai)
k , and (8)

shows Vk
′(ai) = Φ(ai)

(

V
(ai)
k

)

⊆ Nk. Thus Vk
′κ ⊆ Nk, and applying Lemma 4 finishes

the proof.

We will call Nind(κ) the inductive uniformity on A induced by κ.

Remark 3 Note that we could also use a partial mapping κ′, defined on some subset
D(κ′) ⊆ AIN, for the construction of the inductive uniformity. But Nind(κ

′) coincides
with the inductive uniformity induced by the mapping κ, which acts as κ′ on D(κ′),
and assigns (∆)k∈IN

to each sequence (ai)i∈IN 6∈ D(κ′).

Remark 4 For a given mapping κ we have uniformities N ind

(

(

M
(ai)
k

)

k∈IN

)

and

Nind(κ). The evaluation homomorphisms

Φ(ai) :

〈

TF (X),N ind

(

(

M
(ai)
k

)

k∈IN

)〉

→ 〈A,Nind(κ)〉

are uniformly continuous. Thus Nind(κ) is coarser than the final uniformity on A with
respect to the family {Φ(ai)|(ai)i∈IN ∈ AIN}.

æ

4 A modified construction for the description of equiva-

lence uniform structures

Definition 5 A uniform structure N on a set A is called an equivalence uniform struc-
ture if it possesses a basis of equivalence relations.
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A sequence (Mk)k∈IN of equivalence relations on TF (X) satisfying Mk+1 ⊆ Mk for each
k ∈ IN obviously holds (4), that is (Mk)k∈IN ∈ R. Applying the first inductive process
we obtain relations Wk for k ∈ IN. In general these will not be equivalence relations,
but, according to Lemma 2 they are at least reflexive and symmetric. For k ∈ IN let
Vk be the transitive cover of Wk:

Vk =
⋃

n∈IN

(Wk)
n

.

Then Vk is an equivalence relation.

Lemma 7 If t (Wk+1) ⊆ Wk for t ∈ T (A) and k ∈ IN holds, the transtive covers Vk

also satisfy
t (Vk+1) ⊆ Vk for t ∈ T (A) and k ∈ IN.

Proof : It is enough to show t ((Wk+1)
n) ⊆ Vk for t ∈ T (A) and k ∈ IN. To prove this

let (p, q) ∈ (Wk+1)
n, i.e. let

(p, q) = (p, r1) ◦ (r1, r2) ◦ . . . ◦ (rn−1, q),

where each pair is an element of Wk+1. Then we have

(t(p), t(q)) = (t(p), t(r1)) ◦ (t(r1), t(r2)) ◦ . . . ◦ (t(rn−1), t(q)) ,

where each pair is an element of Wk. Thus (t(p), t(q)) ∈ (Wk)
n ⊆ Vk.

Lemma 7 implies that the sequence (Vk)k∈IN forms the basis of an equivalence uniform
structure N eq((Mk)k∈IN) ∈ Ut. Let Req be the set of all sequences (Mk)k∈IN ∈ R, such
that each Mk is an equivalence relation. If κ is a mapping κ : AIN → Req we construct

the relations V
(ai)
k from κ((ai)i∈IN) as above. Again define

Vk
′κ =

⋃

(ai)∈AIN

Φ(ai)

(

Vk
′(ai)

)

.

Finally let Uκ
k be the transitiv cover of Vk

′κ.
The sequence (Uκ

k )
k∈IN

again will give a uniformity on A holding the desired prop-
erties. To establish the analogous result to Theorem 2 let N ∈ U be an equivalence uni-
form structure, and let (Nk)k∈IN be a basis of N holding the properties (4), Nk◦Nk ⊆ Nk

and t(Nk+1) ⊆ Nk for t ∈ T (A) and k ∈ IN.
As in (8) let for any sequence (ai)i∈IN of elements of A

M
(ai)
k =

{

(p, q) ∈ TF (X)2
∣

∣

∣

(

Φ(ai)(p),Φ(ai)(q)
)

∈ Nk

}

.

Obviously M
(ai)
k is an equivalence relation. Thus the mapping κN with κN ((ai)i∈IN) =

M
(ai)
k maps AIN to Req. Similar to Lemma 6 and Lemma 4, we find Bk ⊆ U

κN

k for
each k ∈ IN, and
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Lemma 8 Let (Mk)k∈IN and (Nk)k∈IN be sequences of relations on TF (X), which sat-
isfy Mk ⊆ Nk for each k ∈ IN. Further let each Nk be an equivalence relation and
let Nk+1 ⊆ Nk for k ∈ IN. Then then transitive covers Vk of (Mk)k∈IN also satisfy
Vk ⊆ Nk for k ∈ IN.

Theorem 3 Let κ be a mapping, κ : AIN → Req. Then the sequence (Uκ
k )

k∈IN
con-

structed above forms a basis of an equivalence uniformity Neq(κ) on A. We have
Neq(κ) ∈ U . Conversly let N ∈ U be an equivalence uniformity, then N = Nind(κN ).

Proof : We show that T (A) is uniformly equicontinuous. Since we have ∆ ⊆

Φ(ai)

(

V
(ai)
k

)

= Vk
′(ai), and Φ(ai) is a homomorphism, Lemma 7 implies that all trans-

lations satisfy

f(b1, . . . , bi−1, Vk+1
′(ai), bi+1, . . . , bσ) ⊆ Vk

′(ai).

Therefore the same holds for the relations Vk
′κ and Uκ

k . The remaining assertions prove
similar to Theorem 2.

æ

References

[1] N.Bourbaki: General Topology (Part I,II),
Hermann Verlag 1966.

[2] G.Grätzer: Universal Algebra,
Springer Verlag 1979.

[3] S.Greco & P.Salmon: Topics in m-adic topologies,
Springer Verlag 1971.

[4] J.Hanson: An infinite groupoid which admits only trivial topologies,
Am.Math.Monthly 74 (1967),568.

[5] L.Hinrichs: Integer topologies,
Proc. AMS 15 (1964),991.

[6] M.Hochster: Rings with nondiscrete ideal topologies,
Proc. AMS 21 (1969),357.

[7] A.Kertesz & T.Szele: On the existence of non-discrete topologies in infinite abelian
groups,
Publ.Math.Debrecen 3 (1953),187.

[8] J.O.Kiltinen: Inductive ring topologies,
Trans. AMS 134 (1968),149.

[9] J.O.Kiltinen: On the number of field topologies on an infinite field,
Proc. AMS 40 (1973),30.

[10] K.P.Podewski: The number of field topologies on countable fields,
Proc. AMS 39 (1973),33.



9

[11] K.P.Podewski: Topologisierung algebraischer Strukturen,
Rev.Roum.Math.Pure.Appl. 22 (1977),1283.

[12] P.L.Sharma: Hausdorff topologies on groups I,
Math.Japonica 26(5) (1981),555.

æ


