Linear systems, differentials and determinants

Gordon Blower

Let (-A, B, C) be a continuous time linear system with state space a separable complex Hilbert space H, where -A generates a strongly continuous contraction semigroup $(e^{-tA})_{t\geq 0}$ on H, and $\phi(x) = Ce^{-xA}B$ is the impulse response function. Let Γ_{ϕ} be the corresponding Hankel integral operator on $L^2(0,\infty)$. The paper introduces an algebra \mathcal{E} of operators on H in which one solves the Lyapunov equation $dR_x/dx = -AR_x - R_xA$, so that $\det(I + R_0) = \det(I + \Gamma_{\phi})$. The paper gives several determinant formulas related to the Carey–Pincus formulas for multiplicative commutators. Special results hold when the quotient \mathcal{A} of \mathcal{E} by the algebra of compact operators is quasi-free in the sense of Cuntz and Quillen [J. Amer. Math Soc. 8 (1995), 251-289]. Under suitable conditions on (-A, B, C), this \mathcal{A} gives a commutative and finitely generated algebra of differential operators such that the maximal ideal space of determines a hyperelliptic spectral curve. Work of Gordon Blower (School of Mathematical Sciences, Lancaster University, UK) and Ian Doust (UNSW Sydney, Australia)

Keywords: spectral measures; Hankel operators; cyclic theory